Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Highly dispersed Co modified covalent organic frameworks as bridging cocatalysts for boosting CO_2 photoreduction over defective carbon nitride

Jinyu Qiu^{a,#}, Yanxia Zheng^{a,#}, Lanxin Wang^a, Meng Liu^a, Lintao Tian^a, Xuelian Yu^{a,*}, Xiaoqiang An^b, Guocheng Lv^{a,*}

Figure s1. HAADF-STEM images of Co@TpTta.

Figure s2. FTIR spectra of TpTta and Co@TpTta.

Figure s3. Enlarged FTIR spectra of TpTta and Co@TpTta.

Figure s4. Possible coordination sites for Co in the TpTta COF framework: N-Co-O

top view.

Figure s5. Possible coordination sites for Co in the TpTta COF framework: N-Co-N side view.

Figure s6. Possible coordination sites for Co in the TpTta COF framework: O-Co-O side view.

Figure s7. HRTEM image of NCN.

Figure s8. ESR spectrum of Co@TpTta/NCN.

Figure s9. Photocatalytic yields of CO for TpTta/Ru and Co@TpTta/Ru.

Figure s10. Co@TpTta/Ru for long-term photocatalytic CO₂ reduction reaction.

Figure s11. Ni 2p XPS spectrum of Ni@TpTta.

Figure s12. Cu 2p XPS spectrum of Cu@TpTta.

Figure s13. Uv-vis plots of NCN and Co@TpTta.

Figure s14. VB XPS spectra of NCN and Co@TpTta.

Figure s15. CO₂-TPD curves of TpTta and Co@TpTta.

Table s1. The formation energy as function of the position according to Figure s4-s6.

	$E_{\rm COF+Co}$	E _{COF}	$\mu_{ m Co}$	$\mu_{ m H}$	n _H	$\Delta E_{\rm form}$
OCoO	-129775.201	-92212.572	-37563.455	-15.433	0	0.826
OCoN	-129760.050				1	0.544
NCoN	-129743.728				2	1.433

Table s2. (Comparison of	photocatalv	tic CO ₂ activities	in the C_3N_4 systems.
			2	J T J

catalysts	Sacrificial agent	Light source	CO production yield (µmol/h)	Selectivity (%)	Ref
Co-POM/carbon nitride hybrids	MeCN: TEOA (4:1, v/v)	300 W Xe lamp (400 nm>λ>800 nm)	17.0	80.0	[1]
g-CNU-CoTDPP	MeCN: TEOA (4:1, v/v)	5 W white-light LED lamp	57.0	79.0	[2]
Co-PYN5@g-C ₃ N ₄	MeCN: TEOA (4:1, v/v)	Hg lamp (λ>400 nm)	0.6	96.0	[3]
Coqpy@mpg-C ₃ N ₄	MeCN	100 W Xe lamp (λ>400nm)	8.0	98.0	[4]
CoPc@P-g-C ₃ N ₄	-	300 W Xe lamp (λ>420nm)	12.3	92.2	[5]
Co-MOF/g-C ₃ N ₄	-	300 W Xe lamp (λ>420nm)	6.8	55.2	[6]
TCOH-CN	-	300 W Xe lamp (λ>420nm)	11.2	90.0	[7]
mpg-CN _x CoPPc	MeCN:TEOA (4:1, v/v)	100mW·cm ⁻² Xe lamp (λ>400nm)	20.8	85.0	[8]
Co@TpTta/NCN	TEOA	300 W Xe lamp (λ>400 nm)	37.3	98.8	This work

[1] Zhao G, Pang H, Liu G, et al. Co-porphyrin/carbon nitride hybrids for improved photocatalytic CO₂ reduction under visible light. Applied Catalysis B: Environmental, 2017, 200: 141~149.

[2] Tian S, Chen S, Ren X, et al. An efficient visible-light photocatalyst for CO_2 reduction fabricated by cobalt porphyrin and graphitic carbon nitride via covalent bonding. Nano Research, 2020, 13(10): 2665~2672.

[3] Wang J, Gil-Sepulcre M, Huang H, et al. CH- π interaction boosts photocatalytic CO₂ reduction activity of a molecular cobalt catalyst anchored on carbon nitride. Cell Reports Physical Science, 2021, 2(12): 100681.

[4] Ma B, Chen G, Fave C, et al. Efficient visible-light-driven CO_2 reduction by a cobalt molecular catalyst covalently linked to mesoporous carbon nitride. Journal of the American Chemical Society, 2020, 142 (13): 6188~6195.

[5] Liu G, Wang Y, Zhou Y, et al. Phosphorous doped $g-C_3N_4$ supported cobalt phthalocyanine: An efficient photocatalyst for reduction of CO₂ under visible-light irradiation. Journal of Colloid and Interface Science, 2021, 594: 658~668.

[6] Chen Q, Li S, Xu H, et al. Co-MOF as an electron donor for promoting visiblelight photoactivities of $g-C_3N_4$ nanosheets for CO₂ reduction. Chinese Journal of catalysis, 2020, 41 (3): 514~523.

[7] Tang Q, Sun Z, Deng S, et al. Decorating $g-C_3N_4$ with alkalinized Ti_3C_2 MXene for promoted photocatalytic CO₂ reduction performance. Journal of Colloid and Interface Science, 2020, 564: 406~417.

[8] Roy S, Reisner E. Visible-light-driven CO_2 reduction by mesoporous carbon nitride modified with polymeric cobalt phthalocyanine. Angewandte Chemie International Edition, 2019, 58 (35): 12180~12184.