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Experimental Section

Materials
The commercial 2-butyloctan-1-amine, 2-decyltetradecan-1-amine and 2-(5,6-difluoro-3-
ox0-2,3-dihydro-1H-inden-1 -ylidene)malononitrile were purchased from Solarmer Materials
Inc. Other chemicals and solvents are purchased from J&K, Alfa Aesar or Bide Pharmatech

Ltd. (China).

Synthetic Procedures
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Figure S1. Synthetic routes of the intermediates and ABBT-BO.

Synthesis of N-(2-butyloctyl)-N-(thiophen-3-yl)thiophen-3-amine (2)

3-Bromothiophene (1.63 g, 10 mmol), 2-butyloctan-1-amine (463.0 mg, 2.5 mmol), sodium
tert-butoxide (480.5 mg, 5 mmol), palladium acetate (41.6 mg, 0.25 mmol), and ftri-tert-
butylphosphine (101.16 mg, 0.5 mmol) were mixed in 30 mL of oxylene and refluxed at 120 ‘C
for 3 h, After the mixture was cooled, water was added and the reaction was extracted with
hexanes for three times. The organic layers were combined and washed with saturated brine,

and dried over Na,SO,. After evaporation of the solvent, the residue was filtered through silica



gel and wished with petroleum ether (PE), the mixture was concentrated in vacuo and without

further purification.

Synthesis of 4-(2-butyloctyl)-8-phenyl-4,8-dihydrodithieno[3,2-b:2',3"-e][1,4]azaborinine (3)

To a solution of compound 2 (crude, 2.5 mmol) in chlorobenzene (10 ml) was added Et;N
(252.9 mg, 2.5 mmol) and PhBCI, (635.28 mg, 4.0 mmol), and the mixture was stirred at 135
‘C for 72 h. After cooling to room temperature, the resulting mixture was concentrated in
vacuo. The residue was purified by column chromatography on silica gel (PE/DCM 5:1) to
give the corresponding compound as a withe solid (783 mg, 72%). "H NMR (500 MHz, CDCls)
5 8.20-8.12 (m, 2H), 7.92 (d, J = 5.3 Hz, 2H), 7.52 (t, J = 7.2 Hz, 2H), 7.48-7.44 (m, 1H),
7.40 (d, J = 5.3 Hz, 2H), 4.44 (d, J = 7.5 Hz, 2H), 2.22-2.15 (m, 1H), 1.43-1.16 (m, 16H),
0.85 (t, J= 7.0 Hz, 6H). *C NMR (126 MHz, CDCl;) 5 149.42, 134.51, 134.07, 128.66, 127.92,

117.25, 56.09, 37.77, 31.69, 31,66, 31.42, 29.53, 28.78, 26.56, 22.98, 22.56, 14.65, 13.95.

Synthesis of 4-(2-butyloctyl)-8-phenyl-2,6-bis(tributylstannyl)-4,8-dihydrodithieno[3,2-b:2', 3'-

ej[1,4]azaborinine (4)

To a solution of compound 3 (700 mg, 1.6 mmol) in dry THF (20 ml) was added dropwise
lithium diisopropyl solution (6 mmol) at -78 °C. After stirring for 2 h at -78 C. To the mixture
was added BuzSnCl (1.11 g, 3.4 mmol). After stirring for 2 h, the reaction was and further
stirred for 2 h at -40 °C. The reaction mixture was quenched by methanol (1.0 mL), After
warming to room temperature, the resulting mixture was concentrated in vacuo to give a black

brown oil without further purification.

Synthesis of 5,5'-(4-(2-butyloctyl)-8-phenyl-4,8-dihydrodithieno[3,2-b:2',3"-e][1,4]azaborinine-

2,6-diyl)bis(4-((2-hexyldecyl)oxy)thiophene-2-carbaldehyde) (5)

To a two-neck flask containing compound 4, Pd(PPhj3), (92.4 mg, 0.08 mmol) and 5-bromo-4-
((2-hexyldecyl)oxy)thiophene-2-carbaldehyde, and dried PhMe (30 ml) were added under N,
atmosphere. The reaction was stirred at 110 °C for 12 h. After cooling to room temperature,

water was added and the reaction was extracted with ethyl acetate three times. The organic



layers were combined and washed with saturated brine, and dried over Na,SO,. The purified
by column chromatography (PE:DCM = 2:1) to give the corresponding product 5 as an orange
oil in 30% yield (545 mg). "H NMR (500 MHz, CDCl;) 5 9.82 (s, 2H), 8.21-8.15 (m, 2H), 7.69
(s, 2H), 7.55-7.44 (m, 5H), 4.39 (d, J = 7.5 Hz, 2H), 4.13 (d, J = 5.1 Hz, 4H), 2.25-2.17 (m,
1H), 1.90 (dt, J = 11.7, 5.7 Hz, 2H), 1.66-1.59 (m, 4H), 1.54-1.49 (m, 3H), 1.40-1.35 (m,
10H), 1.29-1.20 (m, 35H), 0.92—-0.78 (m, 18H). 3C NMR (126 MHz, CDCl;) 5 181.84, 154.71,
148.83, 141.42, 137.37, 134.31, 128.93, 127.98, 127.11, 125.54, 123.11, 114.26, 74.75,
38.29, 37.62, 31.92, 31.91, 31.78, 31.75, 31.50, 31.24, 30.08, 29.74, 29.67, 29.37, 28.82,

26.88, 26.85, 26.66, 23.04, 22.69, 22.65, 14.12, 14.06, 14.00.

Synthesis of 2,2'-((22,2'Z)-(((4-(2-butyloctyl)-8-phenyl-4,8-dihydrodithieno[3,2-b: 2", 3"
eJ[1,4]azaborinine-2,6-diyl)bis(4-((2-hexyldecyl)oxy)thiophene-5, 2-
diyl))bis(methaneylylidene))bis(5,6-difluoro-3-0xo-2, 3-dihydro-1H-indene-2, 1-

diylidene))dimalononitrile (ABB-BO)

To a two-neck flask containing compound 5 (300 mg, 0.26 mmol), 2-(5,6-difluoro-3-oxo-2,3-
dihydro-1H-inden-1-ylidene) malononitrile (202.4 mg, 0.88 mmol), CHCI; (30 ml) and pyridine
(1 mL) were added under nitrogen atmosphere. The mixture was stirred at 70 °C overnight.
After evaporation of the solvent, the residue was purified by column chromatography
(PE/DCM = 1/1) to give the corresponding product ABBT-BO as a dark solid in 85% yield
(344 mg). '"H NMR (400 MHz, CD,Cl,) d 8.67 (s, 2H), 8.36 (s, 1H), 8.25 (s, 1H), 7.50 (s, 1H),
7.32 (s, 1H), 4.72 — 4.48 (m, 4H), 2.99 — 2.69 (m, 8H), 1.88 — 1.58 (m, 5H), 1.46 — 1.19 (m,
33H), 1.03 — 0.52 (m, 18H). HR-MS (MALDI-TOF) m/z calcd. for (Cg;H107BF4N504S4) (M+H*):

1560.72. Found: 1561.06.
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Figure S2. Synthetic routes of the intermediates and ABBT-DT.

Synthesis of N-(2-decyltetradecyl)-N-(thiophen-3-yl)thiophen-3-amine (6)

3-Bromothiophene (1.63 g, 10 mmol), 2-decyltetradecan-1-amine (883.5 mg, 2.5 mmol),
sodium tert-butoxide (480.5 mg, 5 mmol), palladium acetate (41.6 mg, 0.25 mmol), and tri-
tert-butylphosphine (101.16 mg, 0.5 mmol) were mixed in 30 mL of oxylene and refluxed at
120°C for 3 h, After the mixture was cooled, water was added and the reaction was extracted
with hexanes for three times. The organic layers were combined and washed with saturated
brine, and dried over Na,SO,. After evaporation of the solvent, the residue was filtered
through silica gel and wished with petroleum ether (PE), the mixture was concentrated in

vacuo and without further purification.

Synthesis of 4-(2-decyltetradecyl)-8-phenyl-4,8-dihydrodithieno[3,2-b:2',3"-e][1,4]Jazaborinine

(7)

To a solution of compound 6 (crude, 2.5 mmol) in chlorobenzene (10 ml) was added Et;N
(252.9 mg, 2.5 mmol) and PhBCI, (635.3 mg, 4.0 mmol), and the mixture was stirred at 135
‘C for 72 h. After cooling to room temperature, the resulting mixture was concentrated in
vacuo. The residue was purified by column chromatography on silica gel (PE/DCM 5:1) to

give the corresponding compound 7 as a withe solid (870 mg, 58%). 'TH NMR (500 MHz,



CDCls) & 8.20-8.12 (m, 2H), 7.92 (d, J = 5.3 Hz, 2H), 7.55-7.50 (m, 2H), 7.46 (ddd, J = 7.4,
3.9, 1.3 Hz, 1H), 7.40 (d, J = 5.3 Hz, 2H), 4.44 (d, J = 7.5 Hz, 2H), 2.19 (s, 1H), 1.43-1.16 (m,
16H), 0.85 (t, J = 7.0 Hz, 6H). 3C NMR (126 MHz, CDCl;) & 149.44, 141.72, 134.52, 134.09,
128.68, 127.93, 126.10, 117.26, 56.14, 37.77, 31.93, 31.91, 31.72, 29.89, 29.67, 29.66, 29.60,

29.59, 29.50, 29.37, 29.33, 26.62, 22.70, 14.13.

Synthesis of 4-(2-decyltetradecyl)-8-phenyl-2,6-bis(tributylstannyl)-4,8-dihydrodithieno[3,2-

b:2',3"-e][1,4]azaborinine (8)

To a solution of compound 7 (800 mg, 1.3 mmol) in dry THF (20 ml) was added dropwise
lithium diisopropyl solution (5.2 mmol) at -78 ‘C. After stirring for 2 h at -78 ‘C. To the mixture
was added BuszSnCl (1.11 g, 2.6 mmol). After stirring for 2 h, the reaction was and further
stirred for 2 h at -40 C. The reaction mixture was quenched by methanol (1.0 mL), After
warming to room temperature, the resulting mixture was concentrated in vacuo to give a black

brown oil without further purification.

Synthesis of 5,5"-(4-(2-decyltetradecyl)-8-phenyl-4,8-dihydrodithieno[3,2-b:2",3'-

eJ[1,4]azaborinine-2,6-diyl)bis(4-((2-hexyldecyl)oxy)thiophene-2-carbaldehyde) (9)

To a two-neck flask containing compound 8, Pd(PPh3), (92.4 mg, 0.08 mmol) and 5-bromo-4-
((2-hexyldecyl)oxy)thiophene-2-carbaldehyde, and dried PhMe (30 ml) were added under N,
atmosphere. The reaction was stirred at 110 °C for 12 h. After cooling to room temperature,
water was added and the reaction was extracted with ethyl acetate three times. The organic
layers were combined and washed with saturated brine, and dried over Na,SO,. The purified
by column chromatography (PE:DCM = 2:1) to give the corresponding product 9 as an orange
oil in 34% yield (575 mg). '"H NMR (400 MHz, CDCI3) 8 8.17-8.12 (m, 2H), 7.92 (d, J = 5.3 Hz,
2H), 7.56-7.49 (m, 2H), 7.46 (d, J = 7.3 Hz, 1H), 7.40 (d, J = 5.3 Hz, 2H), 4.44 (d, J = 7.5 Hz,
2H), 2.18 (s, 1H), 1.50-1.11 (m, 44H), 0.87 (dt, J = 7.0, 3.3 Hz, 6H). '*C NMR (101 MHz,
CDCl;) 5 181.93, 154.77, 149.01, 141.67, 137.55, 134.24, 129.24 128.00, 127.98, 127.28,

125.61, 124.39, 123.22, 114.50, 38.34, 37.72 , 32.0, 31.95, 31.93, 31,90, 31.79, 31.53, 31.46,



31.33, 30.21, 30.16. 30.06, 29.72, 29.66, 29.54, 29.39, 29.37, 26.92, 26.90, 26.71,22.70.

14.14, 14.12.

Synthesis of 2,2"-((2Z,2'Z)-(((4-(2-decyltetradecyl)-8-phenyl-4,8-dihydrodithieno[3,2-b:2', 3'-
e]J[1,4]azaborinine-2,6-diyl)bis(4-((2-hexyldecyl)oxy)thiophene-5,2-diyl))bis(methaneylylidene))

bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2, 1-diylidene))dimalononitrile (ABB-DT)

To a two-neck flask containing compound 9 (300 mg, 0.22 mmol), 2-(5,6-difluoro-3-oxo-2,3-
dihydro-1H-inden-1-ylidene) malononitrile (184 mg, 0.80 mmol), CHCI; (30 ml) and pyridine (1
mL) were added under nitrogen atmosphere. The mixture was stirred at 70 °C overnight. After
evaporation of the solvent, the residue was purified by column chromatography (PE/DCM =
1/1) to give the corresponding product ABBT-DT as a dark solid in 87% yield (330 mg). 'H
NMR (400 MHz, CDCl3) 6 8.60 (s, 2H), 8.30 (d, J = 7.0 Hz, 4H), 7.78-7.70 (m, 2H), 7.76-7.49
(m, 6H), 4.45 (s, 2H), 3.82 (s, 4H), 2.05 (s, 1H), 1.94 (s, 2H), 1.51 —1.05 (m, 88H), 0.89-0.78
(ddd, J = 19.0, 10.5, 4.6 Hz, 18H). HR-MS (MALDI-TOF) m/z calcd. for (C1o4H131BF4N504S,)

(M+H*): 1728.90. Found: 1728.29.
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Figure S3. Cyclic voltammograms of ABBT-BO and ABBT-DT.



Figure S4. ESP distribution of the ABBT-BO(DT).
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Figure S7 The hole mobilities of PM6:ABBT-BO and PM6:ABBT-DT.

Instruments and Measurement

"H NMR and '3C NMR spectra were measured on a Bruker AV-400 MHz or Bruker AVANCE
Il 500 MHz spectrometer. UV-Vis absorption spectra were recorded on a PerkinElmer
Lambda UV-Vis spectrophotometer. The absorption coefficient was calculated through
Lambert-Beer law A = Kcd, where A is absorbance (no units), K is absorption coefficient (M-
cm'), ¢ is concentration (mol L"), and d is distance light travels (cm'). Cyclic voltammetry
(CV) was measured on a CHI660e Electrochemical Workstation equipped with a glass carbon
working electrode, a platinum wire counter electrode, and a saturated calomel reference
electrode. The potential of saturated calomel electrodes (SCE) was internally calibrated as
0.43 V by using the ferrocene/ferrocenium redox couple (Fc/Fc*), which has a known
reduction potential of -4.80 eV. The scan rate is 50 mV/s. Tapping-mode atomic force
microscopy (AFM) images were obtained by using a Bruker Multimode 8 Microscope.
Transmission electron microscopy (TEM) images were obtained using a JEM-2100F
instrument. 2D-GIWAXS measurements were performed Xeuss 2.0 SAXS/WAXS laboratory
beamline using a Cu X-ray source (8.05 keV, 1.54 A) and a Pilatus3R 300K detector. The

crystal coherence length (CCL) was estimated from the full width half maxima (FWHM) of



peaks by using the formula (CCL = 1.8m/(FWHM)). The d-spacing of molecular stacking can
be calculated by the equation: d = 2m/q.["

The photo-CELIV, TPV and CE measurements reported here were performed by the all-
in-one characterization platform Paios developed and commercialized by Fluxim AG,
Switzerland. Dynamic X-ray photoelectron pectroscopy (DXPS) were determined by X-ray
photoelectron spectroscopy (XPS, LVAC-PHI-5000 VersaProbe Ill) for element distribution
and binding energy analysis.

The hole-only and electron-only devices were fabricated with the architectures of
ITO/PEDOT:PSS/active  layer/MoO3/Ag and  ITO/ZnO/active  layer/PNDIT-F3N/Ag,
respectively. Hole-only and electron-only devices were recorded with a Keithley 236 source
meter under dark. The hole and electron mobility were determined by fitting the dark current

to the model of single-carrier SCLC, which is described by the equation,

2
where J is the current density, p is the zero-field mobility, €, is the permittivity of free space, ¢,
is the relative permittivity of the material, d is the thickness of the active layers, and V is the
effective voltage. The effective voltage was obtained by subtracting the built-in voltage (Vi)
and the voltage drop (V;) from the series resistance of the whole device except for the active
layers from the applied voltage (Vapp), V = Vapp = Vii = V. The hole and electron mobilities
can be calculated from the slope of the J'2-V curves.

The electroluminescence (EL) spectra were acquired by a spectroradiometer (PR745,
Photo Research) or a high-sensitivity spectrometer (QE Pro or NIR Quest 512, Ocean Optics).
The radiation flux of EL was determined by measuring the emitted photons in all direction
through an integrated sphere by using calibrated spectrometers (QE Pro, and NIRQuest-512,
Ocean Optics), under a constant current density with a Keithley 2400 source measure unit.

The dielectric constants of PM6, ABBT-BO and ABBT-DT were measured using the
parallel-plate capacitance measurement with impedance spectroscopy. The device structure
was indium tin oxide ITO/PEDOT:PSS/test film/ PNDIT-F3N/Ag. The Capacitance—Voltage

measurements of the molecules were performed using a HP 4192A LCR meter by sweeping

the voltage from —30 V to 10 V at room temperature, with a ramping rate of 0.5 V s~' and 30



mV of oscillator levels. The measurements were performed under the frequency from 1x103
to 1x108 Hz.

Device Fabrication and characterization

All  solar «cells were fabricated with a conventional architecture of

ITO/PEDOT:PSS/active layer/PNDIT-F3N/Ag. The ITO-coated glass substrates were cleaned

by sequentially ultrasonic bath with detergent, deionized water, and isopropanol. After being

dried in the oven at 60 °C overnight, the ITO-coated glass substrates were treated with an

oxygen plasma for 5 min. Then, 30 nm PEDOT:PSS was spin-coated onto the ITO surface

and annealed at 150 °C in the air for 15 min. The substrates were then moved into an No-filled

glovebox. All the active layers (D/A=1:1.5) were obtained by spin-coating at a total

concentration of 18.8 mg mL-" and 1 vol% of 1,8-diiodooctane. The optimal film thickness of

ca. 100 nm was obtained, measured by a Bruker AXS Dektak stylus surface profiling system.

All the active layers were thermal annealed at 50°C for 10 min. Subsequently, ~10 nm PNDIT-

F3N was spin-coated onto the active layers. Finally, 100 nm Ag was thermally deposited in a

vacuum chamber at a pressure of 3x107 torr. The current density-voltage (J-V)

characteristics were measured under a computer-controlled Keithley 2400 sourcemeter under

1 sun, AM 1.5G solar simulator (Taiwan, Enlitech SS-F5). The light intensity was calibrated by

a standard silicon solar cell (certified by NREL) before the testing, giving a value of 100 mW

cm2 during the test of J-V characteristics. The external quantum efficiency (EQE) spectra

were recorded with a QE-R measurement system (Enlitech, QE-R3011, Taiwan).
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BO and (b) PM6:ABBT-DT.
Table S1. Summary of energy loss data of PM6:ABBT-BO and PM6:ABBT-DT-based

devices.

qVocsa qVocrada AE;  AE,  AE; Eioss
[eV] [eV] [eV] [eV] [eV] [eV]

PM6:ABBT-BO  1.60 1.31 1.17 029 0.14 028 0.71
PM6:ABBT-DT 1.59 1.29 1.14 030 0.15 027 0.72

. Eg
Active layer [eV]
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Table S2. The CCL and d-spacing values of PM6 and blend films.

Film qo [A1] w [A1] CCL [A] d-spacing [A]
PM6 1.74 0.284 21.97 3.22
PM6:ABBT-BO 1.83 0.192 32.50 3.07

PM6:ABBT-DT 1.80 0.164 32.84 3.12
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Figure S12. 3C NMR spectrum of compound 3 in CDCl;
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Figure S13. 'H NMR spectrum of compound 5 in CDCl,.
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Figure S14. 3C NMR spectrum of 5 in CDCls.
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Figure S15. '"H NMR spectrum of ABBT-BO in CD,Cl,
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Figure S16. "H NMR spectrum of compound 7 in CDCl;
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Figure S17. 3C NMR spectrum of compound 7 in CDCl;
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Figure S18. 'H NMR spectrum of 9 in CDCl3
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Figure S22. The high resolution mass spectrum (MALDI-TOF) of compound ABBT-DT.
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Figure S23. Photographs of water and ethylene glycol droplets on the top surfaces of
PM6, ABBT-BO, and ABBT-DT film.

Tablle S3. Surface energy for pure films calculated from water and ethylene glycol contact
angle.

Contact angle[?] A VP A
Film
Water Ethylene glycol [mJ m2] [mJ m2] [mJ m2]
PM6 106.1 78.7 21.77 2.36 2413
ABBT-BO 101.1 78.1 14.08 6.98 21.06
ABBT-DT 105.3 82.2 12.16 7.07 19.13

);;d is the diépersion comﬁonént of surface free énergy. y 1s the i)oleir cdmponent of
surface free energy. y, is surface free energy.
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