
S1

Integrating the multi-functionalities in metalloporphyrin porous organic polymers 

enabling strong polysulfide anchors and rapid electrochemical kinetics in Li-S battery

Yun Sheng Ye*, Mohamed Gamal Mohamed, Cheng Wei Chen, and Shiao Wei Kuo*

Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, 

Taiwan

E-mail: ysye@mail.nsysu.edu.tw; kuosw@faculty.nsysu.edu.tw.

Experimental

Materials 

4-nitrobenzaldehyde (98%, Sigma-Aldrich), acetic anhydride (≥99%, Sigma-Aldrich), pyrrole 

(98%, Sigma-Aldrich), propanoic acid (>99.0%, TCI), pyruvaldehyde solution (37%, Sinopharm 

Chemical Reagent. Co.), pyridine (>99.0%, TCI), hydrochloric acid (HCl, Acros), dichloromethane 

(CH2Cl2, Acros), methyl alcohol (CH3OH, ≥99.5%, Sinopharm Chemical Reagent. Co.), glacial acetic 

acid (≥99.5%, Sinopharm Chemical Reagent. Co.), formaldehyde solution [37% (stabilized with 

MeOH), TCI], magnesium ether bromide (MgBr2·Et2O, 99%, Sigma-Aldrich), N,N-Dimethylformamide 

(DMF, 99.9%, Aladdin), cobalt(II) acetate (98.0%, Aladdin), graphene nanosheet (GN, diameter: 5~10 

μm, thickness: 3~10 nm), poly (vinylidene difluoride) (PVDF, Alfa Aesar), 

bis(trifluoromethane)sulfonimide lithium salt (LiTFSI, >98%, Adamas), N-methyl-2-pyrroldone (NMP, 

≥99%, Aladdin), Li foil (1 mm thickness), sublimed sulfur (S, Alfa Aesar), lithium sulfide (Li2S, Alfa 

Aesar), carbon black (CB, Ketjen black EC600JD, Azko Nobel), 1,3-dioxolane (DOL, >98%, TCI), 1,2-

dimethoxyethane (DME, >99%, TCI), lithium nitrate (LiNO3, Adamas). 

Preparation of Li2S6 solution and sulfur cathode

Li2S6 solution was prepared by the overnight reaction of Li2S and S in a molar ratio of 1:5 in a 1:1 vol ratio 

of DME/DOL. The sulfur cathode was prepared by mixing S (60 wt%), CB (30 wt%), and PVDF (10 wt%) 

dissolved in anhydrous NMP in a planetary mixer at 1600 rpm for 1 h and then coating the as-prepared slurry 
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on aluminum foil, followed by solvent evaporation at 60 °C and further dried at 60 °C under vacuum for 12 

h. The active material loading in the S-cathode was ≈2.0 mg cm−2 for the regular tests and ≈4.0 mg cm-2 for 

high sulfur tests with the same diameter (14 mm).

Preparation of Por-POP/GN, Por(Mg)-POP/GN, and Por(Co)-POP/GN modified separators

The Por-POP/GN, Por(Mg)-POP/GN, and Por(Co)-POP/GN modified separators were prepared by the 

synthesized materials, GN and PVDF in a weight ratio of 3:1:1 in anhydrous NMP in a mechanically stirring 

and then coating the slurry on the Celgard, followed by solvent evaporation at 60 °C and further dried at 60 

°C under vacuum for 24 h. The mass loading of the coating layer was ≈0.25 mg cm−2 for the regular tests. 

Electrochemical and battery measurements

Ion conductivity (σ): The σ was measured by electrochemical impedance spectroscopy (EIS, frequency 0.1-

105 Hz) and calculated using the following equation:

                               (S1)    𝜎 = 𝑙/(𝑅 × 𝐴)

Which l and A are the thickness and area of the separator, respectively, and R is the bulk Ohmic 

resistance of the electrolyte.                  

Cyclic voltammograms (CV): The CV was measured by inserting the Celgard and modified separators between 

the S-cathode and Li metal packed in a CR2032 type coin battery in the voltage range of 1.5-3 V at 30 °C and 

a scan rate of 0.2 mV s−1.

Li-ion diffusion coefficient (DLi+): The DLi+ was evaluated by a series of CV scans with various scan rates from 

0.1 to 0.5 mV s−1 and calculated by the Randles-Sevick equation (eq. S2) as follows:

𝐼𝑃 = 2.69 × 105𝑛3 2𝐴𝐷 1 2
𝐿𝑖 + 𝐶

𝐿𝑖 + 𝑣1 2              (𝑆2)

In which Ip is the peak current, n is the number of electrons transferred in the reaction (S + 2Li+ + 2e- ↔ 

Li2S, n = 2 for Li-S batteries), A is the electrode area, DLi+ is the Li-ion diffusion coefficient, CLi+ is the change 

in the concentration of Li-ion, and v refers to the scan rate.



S3

Linear sweep voltammetry (LSV): The LSV was measured by inserting the Celgard and modified separators 

between a stainless steel disc and Li mental packed in a CR2032 type coin battery at 30 °C. 

Battery measurements: The CR2032 coin-type batteries were assembled by inserting the Celgard and 

modified separators between S-cathode and Li metal in an argon-filled glove box. The electrolyte contained 

1 M LiTFSI and 1 wt% LiNO3 in a 1:1 vol ratio of DME/DOL. The electrolyte/sulfur (E/S) ratio was 10 mL mg-1. 

All battery performance was measured in an oven at 30 °C.

Characterization

The samples were characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray 

spectroscopy (EDX) elemental mapping (FEI Nova NanoSEM450). Transmission electron microscopy (TEM, 

JEOL JEM-1200CX-II). Thermogravimetric analysis (TGA, Q50) from room temperature to 800 °C at a heating 

rate of 10 °C min−1 under N2 atmosphere. The Fourier transform infrared spectroscopy (FTIR, Nicolet Avatar 

320 FTIR spectrometer). The coating thickness was measured by a stylus profiler (DektakXT, Bruker). UV-

Visible spectra were measured by an Evolution 220. X-ray photoelectron spectroscopy (XPS, ESCA 2000 using 

a monochromatized Al Kα anode). The crystal structure was examined by the X-ray diffraction (XRD) pattern 

on a PANalytical X’Pert PRO diffractometer equipped with Cu Kα radiation. The electrolyte contact angles 

were captured by an optical contact-angle measuring device (JC2000C1). Frequency sweeps in the range of 

0.1-100 rad s-1 were conducted at a shear strain of 0.05% within the linear viscoelastic region of each sample. 

The electrochemical testing was measured by an AUTO LAB impedance analyzer. The battery performance 

was measured by LAND Electronic Co., Ltd battery test system at 30°C.

Density functional theory (DFT) calculations

All DFT calculations were conducted using Vienna ab initio simulation package (VASP) with exchange-

correlation functional of generalized gradient approximation (GGA) of the Perdew-Burke-Ernzerhof (PBE) 

method. The projected augmented wave (PAW) potential was used to describe the ionic cores and take 

valence electrons into account using a plane wave basis set with a kinetic energy cut-off of 400 eV. Partial 

occupancies of the Kohn-Sham orbitals were allowed using the Gaussian smearing method and a width of 

0.05 eV. The electronic energy was considered to be self-consistent when the change in energy was less than 

10-6 eV. Geometry optimization was considered convergent when the change in energy was less than 0.05 

eV Å-1. Additionally, for the Co atoms, the U schemes needed to be applied, and the U was set at 3.17 eV. A 
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large poly-aromatic hydrocarbon (PAH) molecule of C96H24 was used to represent graphene in a 

30×30×20 Å3 supercell. The adsorption energies (Eads) were calculated according to equ (S3): Eads = Ead/sub – 

Ead – Esub.

Where Ead/sub, Ead, and Esub are the total energies of the optimized adsorbate/substrate system, the adsorbate 

in the gas phase, and the clean substrate, respectively. 

 

Figure S5. 13C NMR (solid) spectrum of (a) Al-TAPP and (b) Al-CPP at 25 oC. 
Figure S1. 13C NMR spectrum of (a) TAPP and (b) Por-POP.

Figure S2. XRD spectra of Por-POP, Por(Mg)-POP, and Por(Co)-POP.

https://www.sciencedirect.com/topics/engineering/supercell
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Figure S3. N2 adsorption-desorption isotherms of (a) Por(Mg)-POP and (b) Por(Co)-POP.

(a)

(b)

(g)

(h)

(c)

(d)

(e)

(f)

C

C

O

O Co

Mg

2 2 2 2 

2 2 2 2 

10 nm

(i) (j)

10 nm

Figure S4. SEM images of (a) Por(Mg)-POP and (b) Por(Co)-POP and corresponding EDS mapping of (c, d) C, 

(e, f) O, (g) Mg, and (h) Co, respectively; TEM images of (i) Por(Mg)-POP and (j) Por(Co)-POP.
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Figure S5. TGA curves of Por-POP, Por(Mg)-POP, and Por(Co)-POP.
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Figure S6. XPS Mg 2p spectra of Por(Mg)-POP.
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Figure S7. Visualization schematic of Li2S6 diffusion with various modified separators after different resting 

times.
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Figure S8. Electrolyte droplets of the modified separators.
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Figure S9. LSV plots of the cell with Celgard and modified separators.

Figure S10. CV profiles of the cells using the (a) Celgard, (b) Por-POP/GN, (c) Por(Mg)-POP/GN, and (d) 

Por(Co)-POP/GN modified separators.



S9

Figure S11. Cyclic voltammograms at various voltage scan rates and corresponding linear fits of the peak 

current of cells with the (a) Celgard, (b) Por-POP/GN, (c) Por-(Mg)-POP/GN, and (d) Por(Co)-POP/GN 

modified separators.
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Figure S12. Galvanostatic charge/discharge curves of cells with the (a) Celgard, (b) Por-POP/GN, (c) Por(Mg)-

POP/GN, and (d) Por(Co)-POP/GN modified separators at various rates.
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Figure S13. The charge-discharge curves of cells with the (a) Celgard, (b) Por-POP/GN, (c) Por(Mg)-POP/GN, 

and (d) Por(Co)-POP/GN modified separators at 25th-27th cycles by discharge to 1.5 V and then rest for 72 h.
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Figure S14. The charge-discharge curves of the (a) Celgard, (b) Por-POP/GN, (c) Por(Mg)-POP/GN, and (d) 

Por(Co)-POP/GN modified separators with high-sulfur loading at the rates of 0.2, 0.5 and 1 C.

Figure S15. The GITT profiles during the charge/discharge process of the (a) Celgard, (b) Por-POP/GN, (c) 

Por(Mg)-POP/GN, and (d) Por(Co)-POP/GN modified separators.
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Figure S16. The color change in the THF solution and corresponding UV-vis spectra of the cycled cells with 

Celgard and modified separators.

Table S1. The electrolyte uptake (EU) and electrolyte retention (ER) of the Celgard and modified separators.

Parameters Celgard Por-

POP/GN

Por(Mg)-

POP/GN

Por(Co)-

POP/GN

EU (%) 70.8 172.5 173.9 173.4

ER (0.5 h %) 98.2 99.6 99.5 99.2

ER (1 h %) 95.1 98.7 98.3 98.7

ER (12 h %) 93.4 96.8 96.7 96.4

The EU was estimated by soaking weighed the Celgard and modified separators in the electrolyte at 30 
oC for 1 h. The EU values were determined by:

EU (%) = (WS - WI)/WI×100 %                                             (S4)

Where WI and WS are the weight of the initial Celgard and modified separators after soaking in the 

electrolyte, respectively.

The ER was determined by setting soaked separators in an oven at 30 oC for 0.2, 0.5, and 12 h. The ER values 

were calculated by:



S13

ER (%) = 100 % - (WS - WD)/WS×100 %                                      (S5)

Where WS is the pristine Celgard and modified separators after soaking in the electrolyte; WD is the weight 

of the soaked separators after deposition in an oven at 30 oC.

Table S2. Summary of lithium-ion diffusion coefficients (DLi+) of cells with the Celgard and modified separators.

Parameters Celgard Por-

POP/GN

Por(Mg)-

POP/GN

Por(Co)-

POP/GN

DLi+ (peak A) 4.6 x 10-9 4.2 x 10-8 5.4 x 10-8 2.5 x 10-8

DLi+ (peak B) 2.3 x 10-9 2.0 x 10-8 1.6 x 10-8 1.0 x 10-8

DLi+ (peak C) 1.5 x 10-8 9.9 x 10-8 4.8 x 10-8 4.5 x 10-8
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Table S3. Performance of Li-S batteries with multi-functional modifiers and pure S cathode in this study 
and previously reported studies for the past five years. ( “-” means not mentioned).

Modifier Thickness
/mass of 
modifier

(μm
/mg cm-2)

Method S-loading
(mg cm-2)

Initial 
capacity
(mAh g-1)

Decaying 
rate 
(%)

Cycles Discharge 
current

Ref

MoS2@CF-
NRGO

10 1.0-1.2 ≈1000 0.064 1000 1C S1

Li-MOF
/RGO

0.089

MOF/RGO

1.2
/0.5-0.6

1.2-1.4 -

0.103

600 1C S2

Nb2O5/RGO 20
/0.1-0.5

1.5 ≈1100 0.086 500 ≈0.3C S3

HVS ≈5 ≈1.5 1156 0.072 300 0.2C S4
LNS/CB ≈3.5/0.7 1-1.2 881 0.028 500 1C S5

CNF ≈20 1-1.5 955 0.11 200 ≈0.66C S6
VOH@PANI

/CNT
≈8/≈0.2 2.2 930 0.037 1000 1C S7

WN0.67@NG 5.6/0.3 1.2-1.5 ≈900 0.045 800 1C S8
rGO@MoS2 ≈8/0.24 1.8-2.0 877 0.116 500 1C S9

NiCo2O4

/CNF
38/2.0

Vacuum 
assistant 
filtration

(VAF)

1.4-1.8 ≈920 0.057 500 2C S10

CoFe@CNFs 132 1.0 - 0.08 500 1C S11
LMO/SP/NF 70 1.6 1100 0.09 500 1C S12

CNT@C 40 1.2 - 0.07 400 1C S13
Pd3Co

/MWCNT
50 ≈1.0 953 0.07 300 2C S14

Al2O3

/C@OSi
18

Interlayer

2.0 1035 0.065 1000 1C S15

ZnS-RGA 8/0.1 1.5 800 0.1 500 1C S16

CoFe@NC ≈8/0.38 1.4 ≈800 0.059 1000 1C S17
SVO/AB 1.2

/0.5-0.6
1.5-2.0 949 0.081 500 1C S18

Ni@C/G -/≈0.4

Blade 
Coating

2.0 1337.4 0.061 1000 0.5C S19
CoSO4 12.1 2.0 807.7 0.075 500 1C S20

TpPa-SO3H 0.9 1.0 864 0.050 500 1C S21
SNFs/PDA ≈2/≈0.075

in-situ 
growth

1.3 982.2 0.025 1000 1C S22
Por(Mg)-
POP/GN

1385 0.052

Por(Co)-
POP/GN

≈8/≈0.25 Blade 
Coating

≈2.0

1391 0.046

1000 1C This 
work
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Table S4. Comparison of separator modifier containing single-atoms catalyst (SAC) in Li-S batteries.

Sample SAC 
content
(wt%)

Application
(method)

S-loading
(mg cm-2)

Cathode
(S content)

Rate at 2C
(mAh g-1)

Decaying rate (%) 
(cycles/current) 

Ref

Ni@NG 4 (Ni) 13.5 μm 
thickness

/0.3 mg cm-2 
mass loading

(blade-
coating)

1.5 ≈1000 0.044
(500/1C)

S23

Fe/NG 0.54 (Fe) ≈0.1 mg cm-2 
mass loading 

(blade-
coating)

4.5

Li2S6 
solution
(100%)

≈875 0.022
(750/0.5C)

S24

SC-Co 0.7 (Co) 0.3 mg cm-2 
mass loading 

(VAF)

1.2 MWCNTs/S
(63%)

810 (3C) 0.086
(300/0.5C)

S25

Co-N-C 2.8 (Co) ≈0.1 mg cm-2 
mass loading 

(VAF))

1.0 CNT/S
(63%)

1035 0.1
(300/0.5C)

S26

Fe-PNC 1 (Fe) Host material 1.3 Fe-PNC/S
(70%)

≈250 0.2
(300/0.5C)

S27

NC@SA-
Co

4.1 (Co) 10 μm 
thickness

/0.45 mg cm-2 
mass loading
(Interlayer)

1.0 C/S
(56%)

694 0.058
(700/2C)

S28

SAZ-AF
(ZnENC 
and Bio-

MOF-
100)

0.039 
(Zn)

≈0.1 mg cm-2 
mass loading

(double 
coating)

1.5 KB/S
(80%)

920.7 0.05
(1000/2C)

S29

Por(Mg)-
POP/GN

3.8 (Mg) 826.5 0.046
(1000/1C)

Por(Co)-
POP/GN

4.4 (Co)

8 μm 
thickness

/0.25 mg cm-2 
mass loading

(blade-
coating)

≈2.0 60%

859.5 0.052
(1000/1C)

This 
wor

k
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Abbreviation: CF-NRGO: nitrogen-doped reduced graphene oxide and carbonized melamine foam; CNF: 

carbon nanofiber; Fe/NG: nitrogen doped-graphene foam impregnated with Fe; Fe-PNC: Fe-pristine 

nitrogen-doped carbon; HVS: VS2 hexagonal nanotowers; Li-MOF: Li-ion inserted metal oxide framework; 

LMO: LixMoOy; LNS/CB: laponite nanosheets/carbon black; NC: nitrogen-doped carbon nanocube; NC@SA-

Co: single-atom cobalt-anchored nitrogen-doped carbon nanosheets; Pa-SO3H: 2,5-diaminobenzene sulfonic 

acid; SAZ-AF: single-atom zinc-anionic framework; SC-Co: atomic-cobalt-implanted supramolecule-derived 

carbon; SNFs/PDA: silicone nano laments/ polydopamine; SVO/AB: nitrogen-doped sheet VO2/acetylene 

black; TP: 1,3,5-triformyl phloroglucinol; VOH@PANI/CNT: polyaniline encapsulated amorphous vanadium 

pentoxide nanowires/carbon nanotube; WN0.67@NG: WN0.67-embedded N-doped graphene-nanosheets; 

ZnENC: Zn-decorated embroidered ball-like nitrogen-doped carbon; ZnS-RGA: zinc sulfide quantum 

dots/reduced graphene aerogel.
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