Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Photothermal-coupled solar photocatalytic CO₂ reduction with high efficiency and selectivity on MoO_{3-x}@ZnIn₂S₄ coreshell S-scheme heterojunction

Renzhi Xiong, Xiaoxue Ke, Weifeng Jia, Yanhe Xiao, Baochang Cheng and Shuijin Lei*

School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031,

P. R. China

*To whom correspondence should be addressed. E-mail: shjlei@ncu.edu.cn

Fig. S1 XRD patterns of the prepared MoO_{3-x} and MoO_3 samples.

Fig. S2 EPR spectra of the prepared MoO_{3-x} , MoO_3 and MO@ZIS-3 samples.

Fig. S3 XPS spectra of the prepared MoO_3 sample: (a) the XPS survey spectrum, and the XPS core-level spectra of (b) Mo 3*d* and (c) O 1*s*.

Fig. S4 (a-b) SEM images of the prepared MoO_3 sample. (c-d) SEM images, (e-f) TEM images, (g) HRTEM image, and (h) SAED patterns of the prepared MoO_{3-x} sample.

Fig. S5 EDS spectra of the prepared (a) MoO_3 and (b) MoO_{3-x} samples.

Fig. S6 (a) Electron image, (b) EDS layered image, and the corresponding EDS elemental mapping images of (c) Mo and (d) O of the prepared MoO_{3-x} sample.

Fig. S7 (a-b) SEM images, (c-d) TEM images, (e) HRTEM image, and (f) SAED patterns of the prepared $ZnIn_2S_4$ sample.

Fig. S8 EDS spectrum of the prepared $ZnIn_2S_4$ sample.

Fig. S9 (a) Electron image, and the corresponding EDS elemental mapping images of (b) Zn,(c) In, and (d) S of the prepared ZnIn₂S₄ sample.

Fig. S10 EDS spectrum of the prepared MO@ZIS-3 sample.

Fig. S11 UV-Vis-NIR absorption spectra of the prepared MoO_{3-x} and MoO_3 samples.

Fig. S12 Product yields and CH_4 selectivity of the prepared MO@ZIS-3 photocatalyst under different temperatures.

Fig. S13 (a) CH₄ production and (b) CO production as a function of irradiation time under full-spectrum illumination for the prepared MO@ZIS-3 photocatalyst over five runs of cycling tests. (c) Product yields and (d) the corresponding catalyst surface temperatures during the five cycles of tests.

Fig. S14 XRD patterns of the MO@ZIS-3 catalyst before and after five runs of photocatalytic CO_2 reduction.

Fig. S15 SEM images of (a-b) the pristine MO@ZIS-3 photocatalyst and (c-d) that after five runs of photocatalytic CO_2 reduction.

Sample	Zinc element content (wt %)	Indium element content (wt %)	Sulfur element content (wt %)
Before catalysis	6.15	21.81	12.20
After catalysis	6.06	21.49	12.01

 Table S1 Contents of Zn, In and S elements in the MO@ZIS-3 catalyst before and after five

 cycles of photocatalytic experiments.

Fig. S16 Transient photocurrent responses of the prepared MoO_{3-x} , MO@ZIS-3 and $ZnIn_2S_4$ samples under UV-Vis and UV-Vis-IR illumination.