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Experimental section 

Preparation of Fe2O3 and Ti-Fe2O3 photoanodes 

The Fe2O3 and Ti-Fe2O3 photoanodes were prepared by hydrothermal methods 1. 

0.15 M FeCl3 and 1 M NaNO3 were dissolved in 100 mL deionized water as precursor 

solution, and then the solution was delivered into a 50 mL Teflon-lined stainless steel 

autoclave. A hydrothermal reaction was carried out at 100 oC for 1 hour. Subsequently, 

the obtained FeOOH was annealed at 800 oC for 5 min to obtain a Fe2O3 film. A Ti-

Fe2O3 film was also prepared using the similar procedure except the addition of 100 L 

TiCl3 solution into the precursor solution before the hydrothermal reaction. 

Preparation of Fe2O3/NiCoOxHy, Ti-Fe2O3/NiCoOxHy and FTO/NiCoOxHy 

electrodes 

The NiCoOxHy was prepared on FTO, Fe2O3 and Ti-Fe2O3 by electrodeposition2, 

respectively. The Co(NO3)2·6H2O and Ni(NO3)2·6H2O with molar ratio of Co2+ and 

Ni2+ as 1:1 were dissolved in the deionized water. Then the NiCoOxHy samples were 

deposited onto different substrates at -0.5 mA/cm-2 for 10 s in a three-electrode-cell, 

with a platinum wire counter electrode and the saturated calomel electrode (SCE) as a 

reference electrode. 

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.
This journal is © The Royal Society of Chemistry 2023



Construction of solar rechargeable devices 

Solar rechargeable devices were assembled by connecting Fe2O3/NiCoOxHy and 

Ti-Fe2O3/NiCoOxHy photoanodes with carbon cloth (Taiwan Carbon Energy 

Technology, W0S1002) counter electrodes, which were labeled as 

Fe2O3/NiCoOxHy/KOH(aq)/carbon and Fe2O3/NiCoOxHy/KOH(aq)/carbon, respectively. 

The electrolytes were 1 M KOH (pH = 13.6) aqueous solution.  

Morphological, structural and optical characterization of samples 

The morphologies of the samples were characterized by scanning electron 

microscope (SEM, ZEISS Gemini 300) with an accelerating voltage of 3 kV. The 

structures were determined by X-ray diffraction (XRD, ARL X'TRA) and Raman 

spectroscopy (Horiba T64000). UV-vis absorption spectra of the samples were obtained 

using spectroscopy (UV-vis, PE lambda 950). The chemical valence of the samples was 

investigated by X-ray photoelectron spectroscopy (XPS, PHI5000 Versa Probe) with 

the calibration of C 1s peak at 284.6 eV. 
18O isotope labeling experiments 

The 18O isotope labeling experiments were operated in 1 M KOH electrolyte with 

H2
18O as solvent in the dark and under a Xe lamp illumination for 0.5 h. The 18O isotope 

on the sample surfaces were measured by TOF-SIMS (Münster, Germany) with a 

negative ion mode, where a beam of Cs+ ions with the energy of 1 keV sputter onto an 

area about 300 × 300 m2 of samples. 

(Photo)electrochemical characterization 

The (photo)electrochemical properties of the samples were carried out in a three-

electrode by CHI760E electrochemical analyzer under full arc Xe lamp with the 

intensity of 200 mW/cm2. The electrolyte was 1 M KOH aqueous solution (pH=13.6). 

In a three-electrode cell, platinum wire and saturated calomel electrode (SCE) were 

selected as the counter electrode and the reference electrode, respectively. All of the 

potentials in this setup were calculated by equation: E (RHE) = E (SCE) +0.059×

pH+0.24. Moreover, the performance of a full device was measured in a two-electrode 

cell, with the Fe2O3/NiCoOxHy and Ti-Fe2O3/NiCoOxHy as photoanodes and the carbon 

cloth as the counter electrode, respectively.   



 

Figure S1. XRD patterns (a) and Raman spectra (b) of Fe2O3 and Ti-Fe2O3. 

 

Figure S2. UV-vis adsorption spectra (a) and tauc plots (b) of Fe2O3 and Ti-Fe2O3. 

 

Figure S3. XPS ratio of lattice OH-/lattice O2- for Fe2O3 and Ti-Fe2O3. 
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Figure S4. CV curves of Ti-Fe2O3 (a) and Fe2O3 (b) with different scan rates, 

electrochemical active surface area of Fe2O3 and Ti-Fe2O3 calculated from CV curves 

(c). Electrolyte: 1 M KOH. 

 

Figure S5. I-T curves of Fe2O3 (a) and Ti-Fe2O3 (b) oxidized at different conditions. 

Electrolyte: 1 M KOH(H2
18O). 

 

Figure S6. The CV curves of Fe2O3 (a) and Ti-Fe2O3 (b) in different potential ranges. 
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Figure S7. The number of stored charges in the surface faradaic layer of Fe2O3 by 

integrating the anodic transient current and cathodic transient current. E2: 1.7 V vs. RHE 

in the dark. 

 

Figure S8. The current responses of Fe2O3 (a) and Ti-Fe2O3 (b) at different potentials in 

the dark. The current responses of the two samples were recorded by changing the 

applied potential of E2 from 1.42 V vs. RHE to 1.90 V vs. RHE, while E1 was kept at 

1.40 V vs. RHE. The current was monitored with the sample interval of 0.001 s. The 
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different applied potentials (E), is thus calculated by the formula: 
dN dQ

dE edE
 3, where 

the number of stored charges (Q) in the surface faradaic layer  was obtained by 

integrating the cathodic transient current over time by the formula: 
0

t

Q idt  . 

 

Figure S9. The number of stored charge during double layer charging for Fe2O3 (a) and 

Ti-Fe2O3 (b). According to previous work3, the number of charges during double layer 

charging can be measured and calculated by CV curves in the potential range of double 

layer charging (1.2-1.4 V vs. RHE), with the calculation fomula: 
2

a cdQ I I

dE n


 , where 

Q is the number of stored charges (C/cm2), Ia is the anodic current density (A/cm2), Ic 

is the cathodic current density (A/cm2), n is the scan rate (V/s). As shown in Figure S9, 

the number of charges during double layer charging for Fe2O3 increases linearly with 

applied potentials, which is consistent with the charging characteristic of double layer. 

Hence, it can be calculated that the total number of charges during double layer charging 

in the potential window of surface faradaic layer of Fe2O3 (1.4-1.9 V vs. RHE) is about 

5 C/cm2. Similarly, the total number of charges during double layer charging for Ti-

Fe2O3 is about 6.3 C/cm2. 
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Figure S10. The numbers of stored charges in the surface faradaic layer of Fe2O3 and 

Ti-Fe2O3 as a function of applied potentials under illumination (a) and the maximal 

numbers of stored charges of Fe2O3 and Ti-Fe2O3 (b) in the dark and under illumination.  

 

Figure S11. The I-t curves of Fe2O3 and Ti-Fe2O3 at 0.7 V vs. RHE (a), 0.9 V vs. RHE 

(b), 1.0 V vs. RHE (c) under chopped light. 

 

Figure S12. LSV curves of Fe2O3 (a) and Ti-Fe2O3 (b) in the dark and under illumination. 

Electrolyte: 1 M KOH, scan rate: 5 mV/s. 
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Figure S13. XPS spectra of Co 2p (a), Ni 2p (b) and O 1s (c) in Fe2O3/NiCoOxHy and 

Ti-Fe2O3/NiCoOxHy before and after photocharging and dark discharging. 

 

Figure S14. The open circuit voltages of the two solar rechargeable devices (a), cyclic 

stability of Fe2O3/NiCoOxHy/KOH(aq)/carbon cloth during photo charge and dark 

discharge (b). Light source: full arc Xe lamp (200 mW/cm2) 

 

Figure S15. SEM images of Fe2O3/NiCoOxHy (a) and Ti-Fe2O3/NiCoOxHy (b), Raman 

spectra of Ti-Fe2O3/NiCoOxHy, Fe2O3/NiCoOxHy (c), XPS spectra of Co 2p spectra (d), 

Ni 2p spectra (e) and O 1s spectra (f) of Fe2O3/NiCoOxHy and Ti-Fe2O3/NiCoOxHy. 
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Table S1. The ICP of Fe2O3/NiCoOxHy andTi-Fe2O3/NiCoOxHy 
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Sample Ni (mol) Co (mol)

Ti-Fe2O3/NiCoOxHy 0.06 0.15

Fe2O3/NiCoOxHy 0.07 0.14


