Supporting Information

Hierarchically porous Ni foam-supported Co and Sn doped Ni₃S₂ nanosheets

for oxygen evolution reaction electrocatalysts

Won Young An ^{a, £}, Hyungwoo Lee ^{b, £}, Sung Ryul Choi ^a, Sungyong Choi ^a, Hyun-Seok Cho^c, Minseok Choi ^{b, *}, Jun-Young Park ^{a, *}

^a HMC, Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea
 ^b Department of Physics, Inha University, Incheon 22212, Korea
 ^c Polymer Electrolyte Fuel Cell Research Center, Hydrogen and Fuel Cell Department, Korea Institute of Energy Research (KIER), Daejeon 34129, Korea

[£] Won Young An and Hyungwoo Lee contributed equally as first authors.

* Correspondence and requests for materials should be addressed to J.-Y. Park (email: jyoung@sejong.ac.kr; Tel: +82-2-3408-3848) and Minseok Choi (email: minseokchoi.phd@gmail.com).

Catalysts	BET surface area $(m^2 \cdot g^{-1})$	Mean pore diameter (nm)	Total pore volume $(cm^3 \cdot g^{-1})$
Ni ₃ S ₂ @NF	4.56	14.3	0.016
Co-Ni ₃ S ₂ @NF	7.26	9.4	0.018
CoNi-Ni ₃ S ₂ @NF	7.66	7.2	0.014
CoFe-Ni ₃ S ₂ @NF	6.34	7.1	0.011
CoSn-Ni ₃ S ₂ @NF	7.66	6.2	0.015

Table S1. Characterization data of pristine and doped-Ni $_3S_2@NF$ (annealed at 160 °C for 4 h)catalysts from N2 adsorption analysis.

Anode catalysts	Membrane// cathode	Electrolyte (temperature, °C)	Cell voltage (V)	Current density (A cm ⁻²)
CoSn-Ni ₃ S ₂ @NF (this work)	FAA-3-50// NiFe-LDH	1 M KOH (55)	2.0	1.367
	Zirfon// NiFe-LDH	30 wt.% KOH (80)	2.0	0.643
CuCoO _x @NF ¹	FAA-3// Ni/(CeO ₂ -La ₂ O ₃)/C	1% K ₂ CO ₃ (60)	1.95	0.5
CuCoO _x @NF ¹	Tokuyama(A-201)// Ni/(CeO ₂ -La ₂ O ₃)/C	1 M KOH (60)	1.88	0.4
$\mathrm{Co}_{2}\mathrm{Fe}_{1}^{2}$	FAA-3// Pt/C	1 M KOH (none)	1.8	0.13
NiCoFeO _x ³	FFA-3// Pt/C	Nanopure water (50)	2.3	1.0
g-CN-CNF ⁴	FAA-3-50// Pt/C	1 M KOH (60)	1.9	0.734
$Cu_{x}Co_{3-x}O_{4}^{5}$ (Co/Cu =1.8)	FAA-3-50// Ni film	1 M KOH (70)	2.2	0.11
Ni/carbon paper ⁶	Tokuyama(A-201)// Ni	1 M KOH (50)	1.9	0.15
NiCoTi@Ti foil ⁷	Tokuyama(A-201)// NiCoTi@Ti foil	1 M KOH (none)	2.0	0.17

Table S2. Performance comparison of the CoSn-Ni $_3S_2$ @NF OER anodic catalyst inelectrolysis cell with the previously reported anodic materials.

Fig. S1. XRD patterns of Co-Ni₃S₂@NF catalysts synthesized under various hydrothermal processing conditions (temperature = 120, 140, and 160 °C and time = 1, 4, and 7 h).

Fig. S2. FE-SEM image of Co-Ni₃S₂@NF catalysts synthesized under various hydrothermal processing conditions. a) Low magnification. b) High magnification.

Fig. S3. Physicochemical analysis of catalysts. (a) HRTEM atomic resolution images of $Ni_3S_2@NF$ and $Co-Ni_3S_2@NF$. (b) EDX elemental mapping results of $CoSn-Ni_3S_2@NF$ (elements = S, Ni, Co, and Sn).

Fig. S4. OER and HER polarization curves of Co-Ni₃S₂@NF catalysts synthesized under various hydrothermal processing conditions. a) OER activity curves and b) corresponding Tafel plots for Co-Ni₃S₂@NF catalysts. c) HER activity curves and d) corresponding Tafel plots for Co-Ni₃S₂@NF catalysts.

Fig. S5. OER polarization curves of transition and post transition metal-doped Ni₃S₂@NF catalysts. a) j-V curves of Co_xSn_y-Ni₃S₂@NF with different ratios of Co and Sn. b–c) j-V curves of doped-Ni₃S₂@NF catalysts normalized by ECSA (b) and BET (c).

Fig. S6. HER polarization curves of Ni₃S₂@NF, Co-Ni₃S₂@NF, CoSn-Ni₃S₂@NF, and Pt/C catalysts. a) HER activity curves and b) corresponding Tafel plots of catalysts. c) Comparison of overpotential (η) at 0.4 A·cm⁻² for CoSn-Ni₃S₂@NF with previously reported results for other nickel-based catalysts.

Fig. S7. Experimental setup and electrochemical results of alkaline water-splitting cells (with NF, Ni₃S₂@NF, and CoSn-Ni₃S₂@NF electrodes). a) Electrolysis experimental setup with a single cell zero-gap configuration composed of Ni porous transport layers, bipolar plates, and a membrane separator. b–c) EIS curves of alkaline water-splitting cells at 0.125 A·cm⁻² (b) and 1 A·cm⁻² (c) in 1 M KOH solution at 55 °C. d–e) EIS curves of alkaline water-splitting cells at 0.125 A·cm⁻² (d) and 1 A·cm⁻² (e) in 30 wt.% KOH solution at 80 °C.

Fig. S8. XPS spectra of a) Sn 3*d* and b) S 2*p* peaks of catalysts (Ni₃S₂@NF, Co-Ni₃S₂@NF, and CoSn-Ni₃S₂@NF).

Fig. S9. Cyclic voltammograms (CVs, 0.05 - 0.25 V vs. RHE) of catalysts with various scan rates (10, 20, 40, 60, and 80 mV·s⁻¹). a) Ni₃S₂@NF, b) Co-Ni₃S₂@NF, c) CoSn-Ni₃S₂@NF, d) CoFe-Ni₃S₂@N, and e) CoNi-Ni₃S₂@NF.

Fig. S10. Local atomic structure obtained using DFT calculations. a) Ni₃S₂, b) Co-Ni₃S₂, and c) Sn-Ni₃S₂.

Fig. S11. Density of states (DOS) of a) Ni_3S_2 and b) Co- Ni_3S_2 obtained using DFT calculations. V_{Ni} and V_S are responsible for the DOS of the systems including V_{Ni} and V_S , respectively. Olive and blue dashed lines denote Ni 3*d*-band center and Co 3*d*-band center, respectively, and black line indicates Fermi level. DOS values of the Co components are multiplied by ten for easy visualization.

Fig. S12. Density of states (DOS) of a) Sn-Ni₃S₂ and b) CoSn-Ni₃S₂ obtained using DFT calculations. V_{Ni} and V_{S} are responsible for the DOS of the systems including V_{Ni} and V_{S} , respectively. Olive and blue dashed lines denote Ni 3*d*-band center and Co 3*d*-band center, respectively, and black line indicates Fermi level. DOS values of the Co and Sn components are multiplied by ten for easy visualization.

References

- 1. I. Vincent, A. Kruger, D. Bessarabov, Int. J. Hydrog. Energy, 2017, 42, 10752–10761.
- G.-C. Chen, T. H. Wondimu, H.-C. Huang, K.-C. Wang, C. H. Wang, Int. J. Hydrog. Energy, 2019, 44, 10174–10181.
- D. Xu, M. B. Stevens, M. R. Cosby, S. Z. Oener, A. M. Smith, L. J. Enman, K. E. Ayers,
 C. B. Capuano, J. N. Renner, N. Danilovic, Y. Li, H. Wang, Q. Zhang, S. W. Boettcher,
 ACS Catal., 2019, 9, 7–15.
- J. E. Park, M.-J. Kim, M. S. Lim, S. Y. Kang, J. K. Kim, S.-H. Oh, M. Her, Y.-H. Cho, Y.E. Sung, *Appl Catal B: Environ.*, 2018, 237, 140–148.
- E. López-Fernández, J. Gil-Rostra, J. P. Espinós, A. R. González-Elipe, F. Yubero, A. de Lucas-Consuegra, J. Power Sources, 2019, 415, 136–144.
- S. H. Ahn, B. S. Lee, I. Choi, S. J. Yoo, H. J. Kim, E. Cho, D. Henkensmeier, S. W. Nam,
 S. K. Kim, J. H. Jang, *Appl. Catal. B*, 2014, **154**, 197–205.
- P. Ganesan, A. Sivanantham, S. Shanmugam, ACS Appl. Mater. Interfaces, 2017, 9, 12416–12426.