
Supplementary Information: Sodiation energetics in pore size

controlled hard carbons determined via entropy profiling

1 Galvanostatic data at variable cycle rate

Figure S1: Galvanostatic data performed at the cycle rate indicated in the legend. In all cases, the second
galvanostatic cycle at each C-rate is shown. The synthesis temperature of the hard carbon, in ◦C, is indicated
at the top of each figure. (a) Tsynth = 1000◦C, (b) Tsynth = 1300◦C, (c) Tsynth = 1500◦C, (d) Tsynth = 1700◦C,
(e) Tsynth = 1900◦C. Arrows indicate cycle direction.

2 Comparison of cyclic voltammetry and dQ/dV

Results comparing slow rate cyclic voltammetry (CV) at scan rate 0.1 mV/s (from ref [1]), with dQ/dV from the
present work are presented in Figure S2. dQ/dV obtained by the usual method of differentiating galvanostatic
data are shown in Figure S2g; results from differentiating the entropy profile data (a form of GITT) are presented
in Figure S2h. The CV results of the second scan are overlaid in Figure S2f, obtained from materials at different
synthesis temperature. The cathodic (sodiation) scan shows a broad feature for all the studied hard carbons;
whereas the anodic (desodiation) scan indicates well resolved peaks. This result indicates that the process of
sodiation is kinetically limited at the 0.1 mV/s scan rate.

In contrast, dQ/dV obtained from 10 mA/g galvanostatic cycling shows clearly resolved peaks during so-
diation and during desodiation. This trend is faithfully replicated in the dQ/dV data obtained from entropy
profiling, which show nearly identical peak positions and widths to the galvanostatic data. However, the sodi-
ation peak is still broader than that of the desodiation peak, and (with the exception of the Tsynth = 1000◦C
sample) the two peaks show a potential offset. The potential offset between the sodiation/desodiation peaks
increases systematically with the sample synthesis temperature.

The poorly resolved sodiation peaks obtained from slow rate CV compared to dQ/dV can be explained
as follows. In galvanostatic experiments, the polarisation resistance (iR drop) can be treated as a constant
voltage offset because the current i is, by definition, constant, and the low frequency resistance contribution R
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varies insignificantly over the plateau region [2]. Therefore, when taking the derivative to obtain dQ/dV, the
peak shape is unaffected by the iR drop. In contrast, the iR drop contribution changes dynamically in a CV
experiment, because the current, i, varies, and is highest at the peaks. This leads to peak broadening as observed
in the data shown here, with more severe broadening at higher sweep rates. This difference is particularly severe
for the materials synthesised at higher synthesis temperature: Tsynth = 1700◦C and Tsynth = 1900◦C.

Figure S2: Comparison of results from slow rate cyclic voltammetry (CV) (a-f) with results from dQ/dV.
CV data at a scan rate of 0.1 mV/s (a-e) were obtained (adapted) from Figure S8 of ref. [1], where the
synthesis temperature is indicated in each panel. The results from the second galvanostatic cycle are overlaid
at each synthesis temperature. (g) dQ/dV results, obtained from the second galvanostatic cycle at 10 mA/g
(corresponding to results presented in Figure S1). (h) dQ/dV results obtained from the entropy profiling method
shown in the main paper.

3 Optimisation procedure

We utilised the optimisation procedure from our previous work [3] to fit the simulated parameters, θ, in the
Bragg-Williams (BW) model to multiple experimental curves. The following method was applied to all five
hard carbons examined in the study, with at least 3 repeat experimental measurements performed on each. To
check the robustness of the optimisation procedure, the method below was repeated on each data set at least
3 times. Very similar parameters resulted from repeat runs of the optimisation procedure, indicating a robust
method.

The curves of interest were the experimental OCV, the enthalpy and entropy profiles dH/dx and dS/dx,
respectively, and dQ/dV . We also found that fitting the derivatives of the enthalpy and entropy profiles, i.e.
d2H/dx2 and d2S/dx2, led to more robust optimisation.

The number of parameters, θ, necessitated a multiple-stage optimisation process to consistently find valid
solutions and reduce the risk of finding local minima. The three stages can be summarised as:
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1. Minimise f(θ), a weighted sum of the root mean square (RMS) difference between the simulated and
experimental curves (excluding dQ/dV with weight zero), using the particle swarm method. At this
stage, θ = [L,A,B, ϵ1,∆ϵ,Qmax,∆Scorr].

2. Using initial parameter values determined from the previous stage, and the same arguments θ, minimise
f(θ) with the Nelder-Mead simplex method.

3. Using initial parameter values determined from the previous stage, θ = [L,A,B, ϵ1,∆ϵ,Qmax,∆Scorr, g2],
and including dQ/dV in the fitting process, minimise f(θ) with the Nelder-Mead simplex method.

The penalty function, f(θ) is given by

f(θ) = w·f
var

(θ), (S1)

where the weights are w and the individual functions are f
var

(θ).
The functions to be minimised are given by

f
var

(θ) = [fOCV(θ), fdH(θ), fdS(θ), fdQdV(θ), fd2H(θ), fd2S(θ)], (S2)

where fOCV(θ), fdH(θ), fdS(θ), fdQdV(θ), fd2H(θ) and fd2S(θ) are the RMS errors obtained from simulated and
experimental datasets. For example, the RMS error of the open circuit voltage, OCV is given by

fOCV(θ) =

√∑P
i=1 (E

sim
OCV,i(θ)− Eexpt

OCV,i)
2

P
, (S3)

where P represents the number of points obtained after 1D cubic interpolation of the simulated data points onto
the experimental data grid (implemented using “interp1d” from the Scipy library), Esim

OCV,i(θ) is the simulated

OCV dependent on the input arguments, and Eexpt

OCV,i is the experimentally-measured OCV. The other functions

that were minimised likewise were fdH(θ) : dH/dx, fdS(θ) : dS/dx, fdQdV(θ) : dQ/dV = −dx/dEOCV, fd2H(θ)
: d2H/dx2 (obtained by differentiation of equation 7 from the main paper), fd2S(θ) : d2S/dx2 (obtained by
differentiation of equation 6 from the main paper).

The weighting factors are

w = [w1, w2, w3, w4, w5, w6], (S4)

where w1 through to w6 are empirical weighting factors for each dataset. Through trial and error, the most
robust fitting during the particle swarm optimisation (numbered stage 1 above) was obtained by: w1 = 1,
w2 = 4, w3 = 4, w4 = 0.5, w5 = 0.5, w6 = 0, i.e. dQ/dV was initially excluded from the fitting process.

The particle swarm optimisation was implemented using the pyswarm module currently available at
“https://pythonhosted.org/pyswarm/”. The following function arguments in “pso” were found to result in
consistent solutions: maxiter = 200, swarmsize = 400, minstep = 5e-7, minfunc = 5e-7. The velocities “omega”,
“phip” and “phig” were all set to 0.75. The arguments during stages 1 and 2 were

θ = [ϕ,A,B, ϵ1,∆ϵ,Qmax,∆Scorr] (S5)

where the terms above are defined in Table 2 of the main paper. Results suggested that the theoretical maximum
capacity, Qmax, extended beyond the experimentally measured capacity, and hence the simulated data was
rescaled according to a procedure detailed in section 4. ∆Scorr is a constant correction factor to the partial
molar entropy, ∆S(x)

∆S(x) =
∂S(x)

∂x
=

∂Sconf(x)

∂x
+∆Scorr, (S6)

where ∆Sconf is the partial molar configurational entropy determined by solving the partition function, ∆Scorr

is a constant fitted parameter and ∆S(x) includes all entropy contributions.
The particle swarm optimisation was applied to ensure more robust optimisation results dependent on the

initial parameters, θ. The method is stochastic, which means the results of the optimisation procedure might
be different from one run to another. However, with the input arguments specified as above, it was found that
consistent solutions were obtained from 3 independent runs of the procedure.

In stage 2, simulation results were refined using the Nelder-Mead simplex method. This was implemented
using the “minimize” function from Scipy. The initial guess for the input parameters was determined from the
result of the particle swarm optimisation (optimisation stage 1).

Lastly, in stage 3, w6 was set to 0.1 to include fitting of the dQ/dV data while leaving the other weighting
factors unchanged. The number of input parameters was expanded to include g2 , i.e.

θ = [ϕ,A,B, ϵ1,∆ϵ,Qmax,∆Scorr, g2], (S7)
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with g2 initally set to zero and the remaining parameters were initialised using the results from the previous
stage of optimisation. This final optimisation stage allowed the experimental dQ/dV peak FWHM and shape
to be faithfully replicated, while resulting in only minor changes to the results of the other thermodynamic
variables. The entire parameter set was then again fitted using the Nelder-Mead simplex method.

4 Comparing experimental and model concentrations

It is important to account for the sodium filling fractions used to derive the thermodynamic variables obtained
from experiment and compare them consistently with modelled results.

It was found during the numerical optimisation procedure detailed in section 3 that the maximum theoretical
capacity obtained from the fitting process, Qmax, which corresponds to a maximum desodiation fraction of
x = 1, was greater than the experimentally-determined maximum capacity, Qexpt. This finding indicates that
there is in principle additional sodiation capacity below cell voltage -0.02 V versus Na. It also means that we
must carefully consider the x scale of all thermodynamic variables differentiated with respect to x, as shown
subsequently.

We have already defined x as the theoretical sodiation filling fraction in the model, where 0 < x < 1. We as-
sume that at minimum capacity, all sodium is removed from the lattice, because we initalised all thermodynamic
measurements from a CCCV condition at 2.0 V versus Na. Therefore

x =
Q

Qmax
, (S8)

where Q is the measured capacity obtained from experiment in mAh/g. We can similarly define

xexpt =
Q

Qexpt
, (S9)

where xexpt similarly goes from 0 to 1. However, with Qmax ̸= Qexpt, there is a conversion factor required to
relate simulated and experimental data on an equivalent Q scale.

Let us now define k = Qexpt/Qmax. In the fitting procedure in section 3, we made use of the second
derivatives of H(x) and S(x) with respect to x. These must be written as

∂2H(x)

∂xexpt
2
= k2

∂2H(x)

∂x2
, (S10)

and likewise for S(x).
For dQ/dV, the appropriate transformation is

dQ

dV
= − dxexpt

dEOCV(x)
= − 1

k2

(
dx

dEOCV(x)

)
, (S11)

where the minus sign emerges because the measurement was performed by galvanostatic discharge.

5 Interaction parameters from Bragg-Williams model

The following interaction parameters were determined by fitting the Bragg-Williams model, as described in the
main paper, to the experimental electrochemical thermodynamic data. The parameters are defined in Table S1.

Table S1: Energetic terms from the Bragg-Williams model, dependent on synthesis temperature Tsynth (◦C).
The other interaction parameter, Qmax, is presented in Table 4 of the main paper

Tsynth ϵ1 ϵ2 g2 A B ∆Scorr ϕ
(◦C) (meV) (meV) (meV) (eV) (J mol−1 K−1)
1000 -241 -58 8 -1.73 1.54 -0.67 0.682
1300 -318 -29 -8 -1.29 1.67 4.05 0.359
1500 -386 -5 -19 -2.04 2.19 9.29 0.393
1700 -173 10 -31 -0.79 1.90 3.42 0.278
1900 -61 15 -30 -0.36 1.04 3.72 0.238
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Figure S3: Black points: DFT data obtained from Figure 6 of ref. [11], for the biding energy (BE) of sodium
adsorption on graphene. Data re-used with permission from Elsevier Ltd., Copyright 2018. The binding energy
as a function of sodium concentration, n1 is obtained. The fitted function, obtained within the present work,
is E = Aexp(−Bn1) + y0, where E is the adsorption energy of sodium on graphene. The fitting coefficients,
obtained from least squares regression, were: y0 = −0.143 eV, A = −2.749 eV, B = 3.765.

6 Physical explanation for interlayer interaction term

In the Bragg-Williams model, the term ϵ′1 varies with sodiation fraction n1, accounting for the ionic state of
sodium in the interlayer filling region dependent on sodiation fraction. This is because when an alkali metal is
intercalated into a compound with a low density of states (DOS) at the Fermi level, large changes in chemical
potential occur, as highlighted by Dahn et al. [4]. This results in rapid changes of the point term of lithium
in graphite at low lithium occupation, resulting in additional electrochemical features [5]. Similarly, the local
structure of hard carbons approximates to curved bilayer graphene, which also presents a low DOS at the Fermi
level [6, 7]. In fact, Stratford et al. found localised charge transfer between sodium and carbon defects in hard
carbons by in-situ NMR [7]. They found changes in the local environment of the sodium ions with an increase
in the amount of sodium in the hard carbon, implying that the sodium species become increasingly metallic as
the voltage decreases. A greater Knight shift was obtained with increasing sodium concentration, indicating an
increase of the Na 2s DOS at the Fermi level. The operando Raman measurements of Euchner et al. combined
with DFT calculations of phonon spectra, suggest a downwards shift in the G-band through as more sodium
is added in the sloping region [6], which was also observed experimentally by Weaving et al. [8]. Both groups
attributed this shift to charge transfer from the metal atoms to the carbon matrix [6, 8]. DFT calculations
combined with Bader charge transfer analysis also suggest changes in the charge transfer from sodium to carbon
dependent on the amount of inserted sodium [9, 10, 11].

Based on arguments presented previously for lithium in graphite [5, 4, 12] and the experimental/DFT
evidence for the sodium in hard carbon system, it is therefore reasonable to assume that the interlayer point
term, ϵ′1, varies dependent on the sodiation fraction, n1. This is in line with the DFT data of Wasalathilake
et al. [11], who showed a more negative binding energy, ∆ENa, at low sodium occupation that decays to a less
negative ∆ENa as the lattice becomes sodiated. We show DFT data from Wasalthilake et al. in Figure S3, for
sodium adsorption on graphene.

Consistently with these calculations, we found that a relationship of the form

ϵ′1(n1) = ϵ1 +Aexp(−Bn1), (S12)

gave a satisfactory fit to the experimental results for the partial molar enthalpy variation in the sloping region.
This is equivalent to equation 10 from the main paper, where the terms ϵ1, A and B are defined. Pairwise Na-Na
interactions were tested, but were found to negligibly influence the thermodynamic behaviour compared with
the variation in Na-C interactions expressed in equation S12. Therefore, pairwise interactions were neglected.
The quantitative values obtained for A and B by fitting the experimental thermodynamic profiles (c.f. Table S1)
differ from those shown in Figure S3, which are based on DFT data [11]. Nevertheless, the experimental and
DFT parameters are in qualitative agreement, with both parameter sets describing an exponentially decaying
binding energy with the same sign and order of magnitude of the interaction. Quantitative differences between
experiment and the model likely arise from the DFT exchange correlation functional, as well as planar graphene
being an imperfect proxy system for hard carbon.
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Figure S4: (a) The blue dotted line is the cross section of a cylinder. The orange area is enclosed between
two curved graphene sheets, which are represented by black solid lines. The origin of the original Cartesian
coordinate system (x, y) is shown. (b) Zoom in of the enclosed area. The origin in the translated Cartesian
coordinate system (x′, y′) is shown. Any point along the cross section of the top graphene plane is defined in the
polar system (r′, θ′), as shown by the blue point and blue arrow. (c) atomic scale visualisation of the system,
with carbon atoms shown in brown. A monolayer of enclosed sodium atoms is shown in yellow. (d) Separation
of nanopore sites into surface sites of energy ϵs and interior sites of energy ϵb.

7 Eyelid construction

Let us define a cylinder, radius R, of arbitrary length, L. The outline of this cylinder is given by

x2 + y2 = R2 (S13)

where x and y are Cartesian coordinates with (x = 0, y = 0) defining the centre of the cylinder.
Part of this cylinder defines the outline of a graphene sheet. The cross section of the top graphene sheet is an

arc. Stratford et al. [13] showed that all hard carbons produced by hydrothermal synthesis exhibited cylindrical
curvature. Therefore, they hypothesised that the porous regions within hard carbon can be approximated by
curved graphene sheets. If two such graphene sheets are on top of one another, they form a porous region shape
of an “eyelid”, as shown in Figure S4b. The construction is shown with atomically accurate coordinates in
Figure S4c.

We can translate the Cartesian coordinate system to x′, y′, such that (x′ = 0, y′ = 0) defines the centre of
the eyelid. We then obtain by geometry

x′ = x (S14)

y′ = y −R′ (S15)

where R′ = R− 1
2d, and d is the distance between the top and bottom of the eyelid.

From comparison of the average pore size obtained from small angle x-ray scattering (SAXS) and pair
distribution function (PDF) analysis (see below for interpretation and discussion of the pore size discrepancy),
we also know that d ≈ 2

5R. Hence

R′ =
4

5
R (S16)

leading to

y′ = y − 4

5
R. (S17)
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Figure S5: Plot of r′(θ′) as a function of θ′, as defined in equation S23. Data are plotted over the interval
0 ≤ θ′ ≤ π/2. The input value of R was 5 nm.

We can now define a polar coordinate system centred on (x′ = 0, y′ = 0). r′ defines the distance from this
point, θ′ is the angle in radians. By the usual conventions, θ′ = π

2 is along the y′ and y axes while θ′ = 0 lies
along the x′ axis. The coordinate system is shown explictly in Figure S4b. Hence

x′ = r′ cos(θ′) (S18)

y′ = r′ sin(θ′). (S19)

Rearranging the above, we can obtain

(y′ +R′)2 + x′2 = R2. (S20)

Through further rearrangement (taking note of the identity sin2(θ′) + cos2(θ′) = 1), we eventually get

r′2 +
8

5
Rr′ sin(θ′) =

9

25
R2. (S21)

We can solve this quadratic equation to get r′(θ′). Applying the usual formula for solution of a quadratic,
and taking the positive square root (resulting in the only positive solution for r′(θ′)), it is found that

r′(θ′) = −4

5
R sin(θ′) +

R

10

√
64 sin2(θ′) + 36, (S22)

which has the following, slightly simpler form

r′(θ′) =
R

10

(√
64 sin2(θ′) + 36− 8 sin(θ′)

)
. (S23)

We can validate this expression at select values of θ′. At θ′ = 0, r′ = 3
5R, while at θ′ = π

2 , r
′ = 1

5R, as
expected. It can also be seen from Figure S4b that the maximum value of r′ corresponds to θ′ = 0 (the ends of
the graphene sheet), and r′ decreases as the angle increases, with a minimum value of r′ when θ′ = π

2 .
The shape of this construction is not only consistent with the cylindrical curvature obtained from pair

distribution function (PDF) analysis of synchrotron x-ray data [13], but also explains why there is a discrepancy
between the average pore size obtained from small angle x-ray scattering (SAXS) and PDF measurements [13, 1]
for hydrothermal carbons synthesised at the same temperature. It can be seen from Figure S4b that in the
interval between θ′ = 0 and θ′ = π

2 , r
′ does not decrease linearly with increasing θ′, as shown in Figure S5.

We can also determine the average radius of the eyelid construction, ravg using

ravg =
2

π

∫ θ′=π
2

θ′=0

r′(θ′)dθ′. (S24)

Plugging in the result for r′(θ′) (equation S23) and solving the integral numerically yields a value of ravg ≈
0.6d. The average diameter, davg, is therefore given by davg ≈ 1.2d, i.e. slightly larger than the distance between
the top and bottom of the eyelid. We think this average diameter is the most representative size probed by
SAXS.
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8 Derivation of surface and volume energy terms

Having described the model of the hard carbon substrate in terms of the eyelid model, we can now evaluate the
energetics of sodiation inside the nanopores. The following is an extended version of sections 2.5.2 and section
3.4 presented in the main paper.

In a similar spirit to the BET isotherm, we treat the sodium deposition in two levels: surface and bulk-like
(second layer and higher) sites. The surface sites are sodium atoms adsorbed to the curved carbon substrate,
while the bulk-like sites represent sodium deposited either directly on to the surface sites or even further inside
the pore.

Using the construction represented in Figure S4a, we can determine the total enclosed volume inside the
pore, Vtot, and the total surface area of the top and bottom of the eyelid, Stot.

The area of the shaded cross-section shown in Figure S4a is evaluated by subtracting the area of the isoceles
triangle of angle θ from the area of a sector of the same angle. The area of the resulting segment is then
multiplied by 2 (and the arbitrary length, L), to obtain Vtot. More formally

Vtot = LR2(θ − sin(θ)). (S25)

Likewise, the total arc length defines a cross-section, which when extruded along length L, forms a total
area

Stot = 2LRθ. (S26)

From the dimensions shown in Figure S4a-b it is found that θ ≈ 1.29 radians. With this, we can determine
the energetics of sodium filling inside the nanopores. Based on the assumptions above, we split the energetics
into a surface and a bulk-like term. When all of the available sites are filled with sodium, the total sodium
adsorption energy ENa is given by

ENa = VtotρV ϵb + Stotρsϵs (S27)

where ρV is the packing density of sodium in the bulk phase (in atoms per unit volume), ρS is the packing
density of sodium in the surface layer (in atoms per unit area), ϵb is the energy per site of sodium atoms in the
bulk phase, and ϵs is the energy per site of sodium atoms in the surface layer.

Through the geometrical arguments presented above, we can find that

ENa = 0.329ρV ϵbR
2L+ 1.286ρsϵsRL. (S28)

We can then divide through by the number of bulk atoms to obtain

ENa

0.329ρV R2L
= ϵb +

3.91ρsϵs
ρV R

. (S29)

If the number of bulk Na atoms is much larger than the number of interface Na atoms, we can assimilate
the first term into an average binding energy per site, ϵ′2. Thus

ϵ′2 = ϵb +
3.91ρsϵs
ρV R

. (S30)

We can make certain assumptions to obtain ρs and ρV . For ρV , we assume the bulk body-centred cubic
packing density of ρV = 25.5 atoms nm−3. The lowest energy surface of Na is (110), which has a packing
density of ρS = 7.7 atoms nm−2. The only unknowns in equation S30 are then ϵb and ϵs, which can be obtained
by plotting ϵ′2 as a function of the apparent size from SAXS, ravg, as shown in Figure S6b.

Given that this relationship applies when all of the sodium sites are occupied, we can utilise the term ϵ′2
defined within the Bragg-Williams (BW) model in the main paper and take the nanopore sublattice occupancy,
n2 = 1. Based on the point term, ϵ2, and Frumkin interaction parameter g2, each obtained from fitting the BW
model to the experimental thermodynamic profiles, we find ϵ′2 = ϵ2 + g2. The relationship shown in Figure S6b
is found to be of the form y = mx + c and the parameters obtained from linear regression are indicated in
Figure S6b.

From the linear regression fit, ϵb = −0.0045 eV. It is reasonable to approximate ϵb ≈ 0 eV, and therefore
the bulk term co-incides with the onset of bulk sodium deposition at 0 V vs. Na.

It is informative to estimate how the radius determined from SAXS, rSAXS relates to R. A crude approxi-
mation is to take rSAXS ≈ d/2 = r = R/5, where d is shown in Figure S4b. However, to account for the different
ways that x-rays can be scattered in a porous structure, a more realistic approximation is that rSAXS = ravg,
which was defined in equation S24, i.e. ravg ≈ 0.6d = 0.24R. In this case, r is slightly smaller than ravg, as
shown in the values in Table S2.

Substiuting the SAXS radius rSAXS = ravg into equation S30, we obtain
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Figure S6: (a) simulated partial molar enthalpy as function of sodium concentration x (as previously shown
in the main paper). (b) nanopore energy term ϵ′2 as a function of 1/ravg, where ravg is the nanopore radius
determined from small-angle x-ray scattering (SAXS). The legend refers to the pyrolysis temperature of each
respective hard carbon.

Table S2: Dimensional and energetic data of hard carbons. Tsynth is the synthesis temperature, ϵ′2 (eV) is the
average energy per atom of the sodium sites, d is the minimum distance between the top and bottom of the
eyelid shown in Figure S4b, ravg is the average radius determined in equation S24, assumed to be the size probed
by SAXS and R is the radius of curvature determined by PDF analysis[13]
Tsynth (oC) ϵ′2 (eV) r = d/2 (nm) ravg (nm) R (nm)

1000 -0.050 0.51 0.61 3.0
1300 -0.037 0.80 0.96 4.8
1500 -0.024 0.84 1.01 5.0
1700 -0.021 1.55 1.86 9.3
1900 -0.015 2.13 2.56 12.8

ϵ′2 = ϵb +
0.938ρsϵs
ρV ravg

. (S31)

With rSAXS = ravg, inserting the linear regression fit parameters from Figure S6b into equation S30, it is
found that

−0.027 =
0.938ρsϵs

ρV
, (S32)

and hence a numerical value of ϵs = −0.095 eV is obtained. Therefore, the curvature of the pore makes sodium
deposition on the pore walls energetically favourable.

9 Nanopore energetics for cylindrical pores

In the case of a pore comprised of three of more graphene layers, the pore would be expected to approximate
to a cylinder of radius R. Equation S27 is also applicable in this case.

Performing analysis similar to the previous section, we can substitute Vtot = πR2L and Stot = 2πRL (note:
the ends of the cylinder are assumed to be open) and obtain

ENa = πR2LρVϵb + 2πRLρSϵs. (S33)

Rearranging similar to before, we obtain

ENa

πR2LρV
= ϵb +

2ρSϵs
RρV

, (S34)

and, by the reasoning before

ϵ′2 = ϵb +
2ρSϵs
RρV

, (S35)

note that apart from a different pre-factor, equation S35 is identical to equation S31, i.e. the energetic term
ϵ′2 scales inversely with the radius of curvature of the nanopore, R. However, the numerical scale is different
compared with the slit-like pores above.
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