Supporting Information

MXene-decorated flexible Al_2O_3/TiO_2 nanofibrous mats with selfadaptive stress dispersion towards multifunctional desalination

Yunpeng Wang, a Wanlin Xu, a Xixi Zou, a Wanlin Fu, a Xiangyu Meng, a Jingyi Jiang,

^a Yiqun Zheng, ^b Seeram Ramakrishna, ^c Yueming Sun, ^a Yunqian Dai *,^a

^a School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
^b School of Chemistry, Chemical Engineering, and Materials, Jining University, Qufu, Shandong, 273155, P. R. China
^c NUS Centre for Nanotechnology and Sustainability (NUSCNS), National University of Singapore, 117584, Singapore

* Address Corresponding to: daiy@seu.edu.cn

Fig. S1. XRD of flexible and traditional Al_2O_3/TiO_2 nanofibrous mats.

Fig. S2. SEM image of the Al_2O_3/TiO_2 microspheres.

Fig. S3. The corresponding diameter distributions of (A) flexible, (B) traditional Al_2O_3/TiO_2 nanofibrous mat and (C) Al_2O_3/TiO_2 nanospheres.

Fig. S4. Elastic modulus of the traditional nanofibrous mat and flexible nanofibrous mat.

Fig. S5. The stress-strain curves of traditional and flexible Al_2O_3/TiO_2 nanofibrous mats.

Materials	Tensile		Young's modulus/MPa	Reference
	strength	Strain/%		
	/MPa			
Flexible Sn-doped	0.220	1.80	13.3	1
SrTiO ₃ membranes				
BM-Li _{0.35} La _{0.55} TiO ₃	0.320	1.58	20.3	2
membrane				
N-CNF membrane	0.880	1.69	51.8	3
TiO ₂ /carbon NFM	1.14	2.20	51.8	4
Co-doped-core-shell	1 20	2.50	27.1	5
carbon NFM	1.30	3.50	37.1	5
SiO ₂ -CNFMs	1.52	1.77	77.4	6
Montmorillonite@ZrO ₂ -	1.02	1.12	146	7
SiO ₂ membranes	1.83	1.13	146	,
Flexible Al ₂ O ₃ /TiO ₂	1.77	0.581	305	This work
nanofibrous mat-1				
Flexible Al ₂ O ₃ /TiO ₂	2.18	0.715	305	This work
nanofibrous mat-2				
Flexible Al ₂ O ₃ /TiO ₂	1 4 4	0.005	150	TT1 ' 1
nanofibrous mat-3	1.44	0.905	159	I his work

Table S1 Comparison of tensile strength

Fig. S6. BJH adsorption of traditional and flexible Al₂O₃/TiO₂ nanofibrous mats.

Fig. S7. XRD of the $Ti_3C_2T_x$ Mxene sheets.

Fig. S8. TEM image of the $Ti_3C_2T_x$ Mxene sheets.

Fig. S9. Surface temperature change as a function of irradiation time for the water under one sun solar illumination. The inset depicts the IR thermal images showing the temperature distribution of the water.

Fig. S10. Absorption spectra of the $Al_2O_3/TiO_2/MX$ ene mat.

Fig. S11. The water mass change recording the evaporation performance of photothermal $Al_2O_3/TiO_2/Mx$ ene mat under dark.

Fig. S12. Mass change of seawater for the flexible Al_2O_3/TiO_2 mat under different solar illumination intensities.

Materials	evaporation rate (kg·m ⁻² ·h ⁻ ¹)	light-to-vapor energy conversion efficiency (%)	Reference
A cobalt nanoparticle-			
carbonaceous	1.39	93.4	8
nanosheets/MXene foam			
Flexible and superhydrophobic			
MXene based fabric	1.26	93.3	9
composites			
Nanocomposite MXene@rGO	1.33	85.2	10
membrane			
PVDF/graphene membrane	1.20	84.0	11
· 8			
Graphite wood	1 15	80.0	12
Graphic-wood	1.13	80.0	
			12
A metal-Si hybrid nanowire	1.12	72.8	15
Carbon black nanoparticles of			
Janus absorbers	1.30	72.0	14
Photothermal	1.43	102	this work
$AI_2O_3/I_1O_2/Mxene mat$			

 Table S3 Comparison of conversion rates in Figure. 3

Fig. S13. Air temperature and relative humidity were recorded from 9:00 to 17:00.

 Table S3 Comparison of density of the 3D photothermal evaporator to previous reports

in Figure. 5

Materials	Density (mg/cm ³)	Reference
Elastic 3D fibrous aerogels	7.02	15
Porous 3D nanofibrous Kevlar aeroge	11.9	16
Ultralight BNNTs/rGO aerogel	16.3	17
Self-assembled 3D networks of aramid nanofiber composites	20.0	18
Aramid nanofiber aerogel	25.0	19
ANF-derived carbon aerogel	51.7	20
Polyimide/MXene aerogel	69.7	21
Resultant graphene-polydopamine-bovine serum albumin aerogel	88.0	22
3D Al ₂ O ₃ /TiO ₂ /Mxene evaporator	6.41	This work

References

- X. Gao, F. Zhou, M. Li, X. Wang, S. Chen and J. Yu, ACS Appl. Mater. Interfaces, 2021, 13, 52811-52821.
- X. Li, Y. Zhang, L. Zhang, S. Xia, Y. Zhao, J. Yan, J. Yu and B. Ding, *Small*, 2022, 18, 2106500.
- 3 J. Wang, Z. Wang, J. Ni and L. Li, *Energy Storage Mater.*, 2022, 45, 704-719.
- P. Zhang, S. Zhang, D. Wan, P. Zhang, Z. Zhang and G. Shao, *J. Hazard. Mater.*, 2020, **395**, 122639.
- 5 Z. Xu, J. Zhu, J. Shao, Y. Xia, J. Tseng, C. Jiao, G. Ren, P. Liu, G. Li, R. Chen, S. Chen, F. Huang and H. Wang, *Energy Storage Materi.*, 2022, **47**, 365-375.
- Z. Zhu, L. Zhong, Z. Zhang, H. Li, W. Shi, F. Cui and W. Wang, J. Mater. Chem.
 A, 2017, 5, 25266-25275.
- 7 X. Mao, J. Hong, Y. Wu, Q. Zhang, J. Liu, L. Zhao, H. Li, Y. Wang and K. Zhang, Nano Lett., 2021, 21, 9419-9425.
- 8 X. Fan, Y. Yang, X. Shi, Y. Liu, H. Li, J. Liang and Y. Chen, *Adv. Funct. Mater.*, 2020, **30**, 2007110.
- 9 W. Xiao, J. Yan, S. Gao, X. Huang, J. Luo, L. Wang, S. Zhang, Z. Wu, X. Lai and J. Gao, *Desalination*, 2022, **524**, 1155475.
- 10 P. Ying, B. Ai, W. Hu, Y. Geng, L. Li, K. Sun, S. Tan, W. Zhang and M. Li, *Nano Energy*, 2021, **89**, 106443.
- C. Huang, J. Huang, Y. Chiao, C. Chang, W. Hung, S. Lue, C. Wang, C. Hu, K. Lee, H. Pan and J. Lai, *Adv. Funct. Mater.*, 2021, **31**, 2010422.
- 12 T. Li, H. Liu, X. Zhao, G. Chen, J. Dai, G. Pastel, C. Jia, C. Chen, E. Hitz, D. Siddhartha, R. Yang and L. Hu, *Adv. Funct. Mater.*, 2018, **28**, 1707134.
- 13 B. Joo, I. Kim, I. Han, H. Ko, J. Kang and G. Kang, *Appl. Surf. Sci.*, 2022, 583, 152563.
- 14 W. Xu, X. Hu, S. Zhuang, Y. Wang, X. Li, L. Zhou, S. Zhu and J. Zhu, Adv. Energy Mater., 2018, 8, 1702884.
- X. Meng, X. Peng, Y. Wei, S. Ramakrishna, Y. Sun and Y. Dai, *Chem. Eng. J.*, 2022, 437, 135444.

- 16 Q. Cheng, Y. Liu, J. Lyu, Q. Lu, X. Zhang and W. Song, J. Mater. Chem. A, 2020, 8, 14243-14253.
- M. Wang, T. Zhang, D. Mao, Y. Yao, X. Zeng, L. Ren, Q. Cai, S. Mateti, L. Li, X. Zeng, G. Du, R. Sun, Y. Chen, J. Xu and C. Wong, *ACS Nano*, 2019, 13, 7402-7409.
- 18 H. He, X. Wei, B. Yang, H. Liu, M. Sun, Y. Li, A. Yan, C. Tang, Y. Lin and L. Xu, *Nat. Commun.*, 2022, **13**, 4242.
- 19 C. Xie, L. He, Y. Shi, Z. Guo, T. Qiu and X. Tuo, ACS Nano, 2019, 13, 7811-7824.
- 20 B. Zhou, G. Han, Z. Zhang, Z. Li, Y. Feng, J. Ma, C. Liu and C. Shen, *Carbon*, 2021, **184**, 562-570.
- 21 Y. Yang, W. Fan, S. Yuan, J. Tian, G. Chao and T. Liu, *J. Mater. Chem. A*, 2021, 9, 23968-23976.
- 22 A. Masud, C. Zhou and N. Aich, *Environ. Sci.- Nano*, 2021, **8**, 399-414.