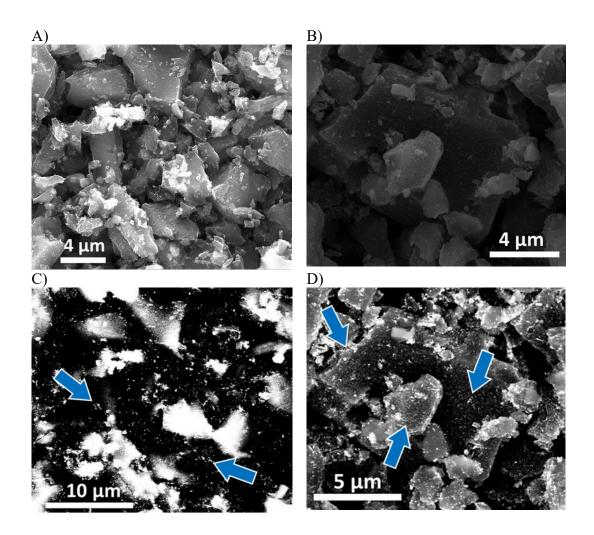
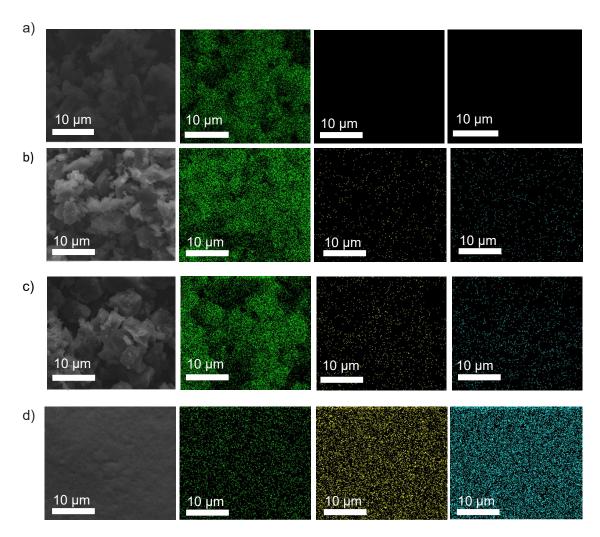
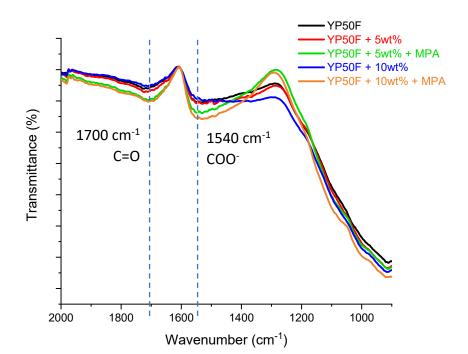
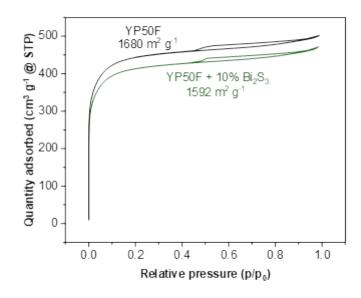
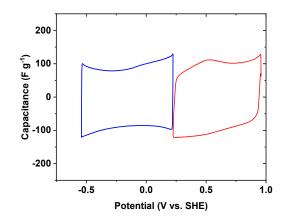

Supporting Information Double redox aqueous capacitor with high energy output


Adam Slesinski, Sylwia Sroka, Sergio Aina, Justyna Piwek, Krzysztof Fic, Maria Pilar Lobera, Maria Bernechea, Elzbieta Frackowiak


Figure S1. A) and B) TEM images of $YP50F + 10wt\% Bi_2S_3$. C) and D) TEM images of $YP50F + 10wt\% Bi_2S_3 + MPA$ with 50 nm scale and 20 nm scale. Arrows have been included to indicate the location of $Bi_2S_3 NCs$.


Figure S2. SEM images with of A) YP50F, B) YP50F + 5wt% Bi₂S₃ and C) YP50F + 10wt% Bi₂S₃ with secondary electrons (SE) mode and with back scattered diffraction mode (BSED) (D, E, F respectively) in which heavier elements appear brighter and in our case is related to the presence of Bi₂S₃ nanocrystals (scale is 5 µm). Magnification is x20000. Arrows have been included to indicate the location of Bi₂S₃ NCs.


Figure S3. SEM images of A) $YP50F + 5wt\% Bi_2S_3 + MPA$ and B) $YP50F + 10wt\% Bi_2S_3 + MPA$ in SE and in BSED mode (C and D respectively). Arrows have been included to indicate the location of Bi_2S_3 NCs.


Figure S4. SEM-EDS elemental mapping of (a) YP50F, (b) YP50F + 5wt% Bi_2S_3 , (c) YP50F + 10wt% Bi_2S_3 , and (d) as-synthesized Bi_2S_3 NCs. C in green, S in yellow and Bi in blue.

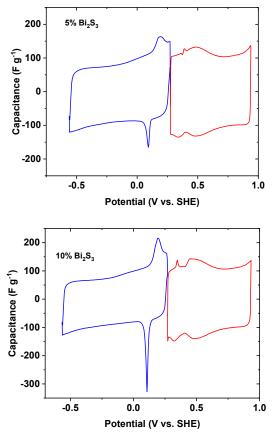


Figure S5. FTIR spectra of YP50F (black), $YP50F + 5wt\% Bi_2S_3$ (red), $YP50F + 10wt\% Bi_2S_3$ (blue), $YP50F + 5wt\% Bi_2S_3 + MPA$ (green) and $YP50F + 10wt\% Bi_2S_3 + MPA$ (orange) after 250 scans, 4 cm⁻¹ resolution, from 900 to 2000 cm⁻¹.

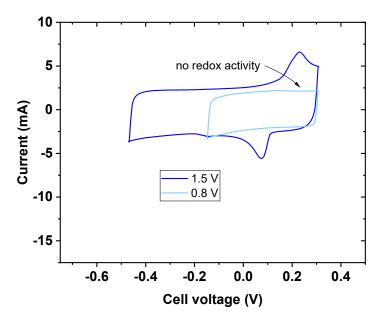


Figure S6. Nitrogen adsorption/desorption isotherm at 77K to determine the surface area.

Figure S7 Electrodes operation voltammetry in $YP50F + Bi_2S_3$ in 1 M Li₂SO₄ at 5 mV·s⁻¹. Cell voltage 1.5 V.

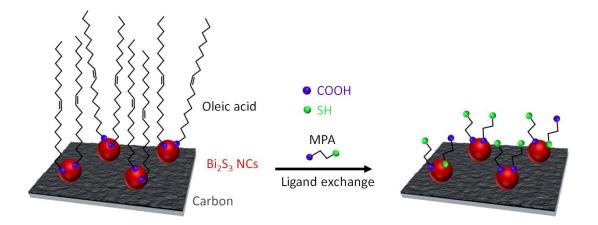
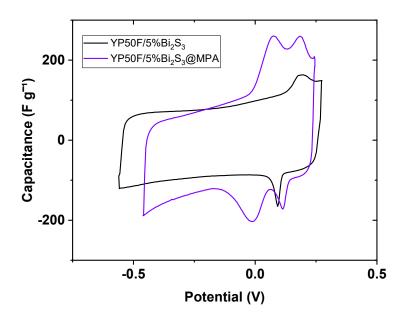
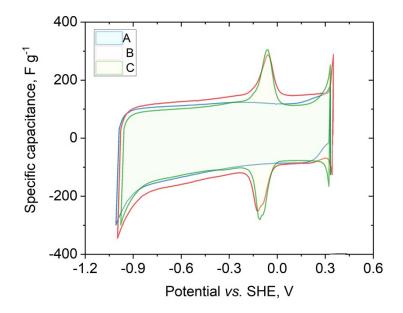
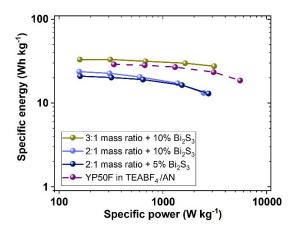

Figure S8 Negative electrode operation voltammetry in $YP50F + 10wt\% Bi_2S_3$ in 1 M Li_2SO_4 at 5 mV·s⁻¹. Cell voltage 0.8V and 1.5 V.

Table S1 Elemental composition of pristine electrode containing 10wt% Bi₂S₃ and electrodes from the systems operating at different upper cell voltage limits 0.8 V and 1.5 V.


Electrode	N	С	Η	S
$YP50F + Bi_2S_3$ pristine	0.4	85.7	1.0	0.6
$YP50F + Bi_2S_3$ positive (1.5 V)	0.0	82.6	1.2	0.6
$YP50F + Bi_2S_3$ negative (1.5 V)	0.6	85.9	1.0	0.1
$YP50F + Bi_2S_3$ positive (0.8 V)	0.3	82.9	1.0	0.9
$YP50F + Bi_2S_3$ negative (0.8 V)	0.5	85.9	1.0	0.3


Figure S9 Metallic deposition of bismuth on glass fiber separator of the cell $YP50F + Bi_2S_3$ in 1 M Li₂SO₄ at 1.5 V.


Figure S10 Scheme of the 3-mercaptopropionic acid (MPA) ligand exchange treatment where MPA molecules substitute the stabilizing oleic acid chains on the surface of the Bi₂S₃ nanocrystals. Most of MPA molecules bond to the NCs through the carboxylic acid end. Blue spheres represent carboxylic acid groups and green spheres, thiol groups.

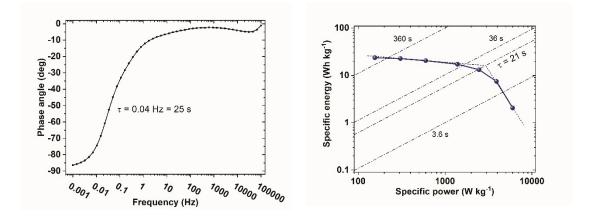

Figure S11 Comparison of the negative electrode responses in $5wt\% Bi_2S_3$ and $5wt\% Bi_2S_3 + MPA$. (cell polarized to 1.5 V) in 1 M Li₂SO₄ at 2.5 mV·s⁻¹.

Figure S12 Specific capacitances calculated from SPECS data of the negative electrode of YP50F (A), $5wt\% Bi_2S_3 + MPA$ (B) and $5wt\% Bi_2S_3$ (C) in 1 mol L⁻¹ NaI with 2:1 electrode mass ratio.

Figure S13 Ragone plot for different negative-to-positive electrode mass ratios of the systems. Comparison with organic medium. Specific values expressed per mass of both electrodes.

Figure S14 Bode plot (ac) and Ragone plot (dc) in wide discharge rate spectrum to analytically determine RC time constant.

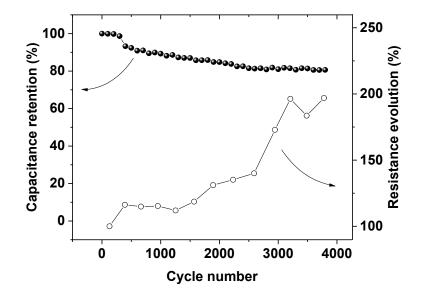


Figure S15 Cyclability of the system $(1 \ A \ g^{-1})$ (-) $YP50F + 10wt\%Bi_2S_3 + MPA // YP50F$ (+) $(1 \ mol \ L^{-1} \ NaI) \ m_{:}m_{+} = 2:1.$