1	
2	Supporting Information
3 4	First-Principles Study on Ultrafast Li-ion Diffusion in Halospinel Li ₂ Sc _{2/3} Cl ₄ Through Multichannels Designed by Aliovalent Doping
5	Suseong Hyun ^{1,+} , Hoje Chun ^{1,+} , Minjoon Hong ¹ , Joonhee Kang ² , and Byungchan Han ^{1*}
6	¹ Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
7	² Department of Nanoenergy Engineering, Pusan National University, Busan, 46241, Republic of Korea
8	+ Equal contribution
9	* Corresponding author: bchan@yonsei.ac.kr
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	

1	Table S1.	Type of	f sharing	for each	site of	halospinel.
---	-----------	---------	-----------	----------	---------	-------------

Site	8a	16c	16d	48f
8a	None	Face	Corner	Corner / Edge
16c	Face	Edge	Corner / Edge	Corner / Face
16d	Corner	Corner / Edge	Edge	Face
48f	Corner / Edge	Corner / Face	Face	Corner / Edge

2 Figure S1. The structure of LSC-0.2Fe with Fe doping at (a) 8a, (b) 16c, (c) 16d, and (d) 48f sites, respectively.

1

3 Table S2. The doping energy of LSC-0.2Fe with several doping sites obtained by DFT calculations. Each
4 energy corresponds to Fig. S1(a-d).

Site	8a	16c	16d	48f
Doping energy (eV)	5.267	4.729	2.632	4.469

1

Fig. S2. DFT energy differences relative to the energy of the most thermodynamically stable structure for (a) LSC0.2Fe and (b) LSC-0.4Fe; the most stable structure and its cation polyhedron distribution for (c) LSC-0.2Fe and (d)

4 LSC-0.4Fe; the most unstable structure and its cation polyhedron distribution for (e) LSC-0.2Fe and (f) LSC-0.4Fe.

1 **Table S3**. The doping energy of halospinel with doping $Fe^{3+}(Li_{17}Sc_4FeCl_{32})$ and $Fe^{2+}(Li_{18}Sc_4FeCl_{32})$, respectively.

2 In both cases, Fe was doped at the 16d site which is the most thermodynamically stable one.

			Doping Energy		
LSC-0.2Fe	Li	Sc	Fe	Cl	(eV)
Li ₁₇ Sc ₄ FeCl ₃₂	+1	+3	+3	-1	5.589
Li ₁₈ Sc ₄ FeCl ₃₂	+1	+3	+2	-1	2.632

2 Fig. S3 (a) Schematic of the gate. (b) Gate considered in our study. The octahedral site can be occupied in the center
3 of the gate, which is here called the 'gate site'.

Fig. S4 Li⁺ migration pathway through the gate site. (a) Energy profile of the migrating Li⁺ along the path and (b)
image of migration. It is one of the tetrahedral-to-tetrahedral (8a-to-8a site) pathways but was not considered
significant because the migration occurs through face sharing and accordingly has a high energy barrier.

2 Fig. S5. Formation of a new connection on the (111) plane during the migration of Li⁺ through the gate, as illustrated
3 in Fig. 3: (a) 1st and (b) 5th images, respectively.

1 Table S4. Li-Cl distances $\begin{pmatrix} d \\ Li^+ - Cl^- \end{pmatrix}$, bader charges (Q), and the estimated electrostatic interactions ($Q_{Li} + Q_{Cl} / d_{Li - Cl}$ of the atoms shown in Fig. 5(b), for each model system.

Model system	$d_{Li^+ - Cl^-}$ (Å)	$Q_{Cl^{-}}(e)_{a}$	Q _{Li} + (e)b	$Q_{Li} + Q_{Cl} / d_{Li-Cl}$
LSC	2.649	-0.752	0.887	-0.252
LSC-0.2Fe	2.518	-0.762	0.886	-0.268

The approximation of electrostatic energy was calculated on the 4th image of migration in Fig. S4. 3

^a The average value of three Cl close to Li among Cl constituting $[FeCl_6]^{4-}$ octahedron. 4

^b The Li⁺ passing through the gate 5

^c A higher negative value indicates a stronger attraction. 6

7

2 Fig. S6 Mean-square displacement (MSD) plots of Li⁺ for (a) LSC, (b) LSC-0.2Fe, and (c) LSC-0.4Fe.

1 Table. S5. The distance between the initial and final positions for considerable Li⁺hopping in this work. The distance

2 was measured in the most stable LSC-0.2Fe.

Model system	Tet – Tet	Tet – Oct	Oc	t – Oct
Initial – Final	8a – 8a	$8a - 16c^a$	16c ^a -16d	16d – 16d
Distance (Å)	4.50	2.25	3.68	3.68

3 ^a The gate site notated in Fig. S3.

1

Fig. S7. The total collective motion of Li+ (green) and collective motion paired only octahedron to
octahedron hopping (yellow). The data are from the AIMD simulation at 1000K.

1

2 Fig. S8. The ratio of Octahedral – Octahedral site hopping for single Li⁺, among the considered type of
3 hopping listed in Table. S5. The data are from the AIMD simulation at 800K.