---Supporting Information---

Ultrathin Corrugated Nanowire TiO₂ as a Versatile Photoanode Platform for Boosting Photoelectrochemical Alcohol and Water Oxidation

Fushuang Niu^{†[a]}, Pengfei Zhang^{†[a]}, Zhenghao Zhang^[a], Quan Zhou^[b], Pengju Li^[a],

Rong Liu^[a], Wei Li^[a] and Ke Hu^{[a]*}

[a] F. Niu, P. Zhang, Z. Zhang, R. Liu, Prof. W. Li, and Prof. K. Hu

Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China.

E-mail: khu@fudan.edu.cn

[b] Dr. Q. Zhou

School of Advanced Study, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China.

† Fushuang Niu and Pengfei Zhang contributed equally to this paper.

Contents

Experimental Section
Synthesis of Spherical nanocrystalline particulate TiO ₂ (NPTiO ₂)2
Figure S1-S83
Synthesis of $[Ru(4,4'-(PO_3H_2)_2-2,2'-bipyridine)(2,2'-bipyridine)_2]^{2+}(RuP)7$
Synthesis of phosphate-containing ligand (3-(pyridin-4-yl)propyl)phosphonic acid
(Py-C3-PO(OH) ₂)10
Synthesis of water oxidation catalyst (Ru(bda)(4-MeOPy) ₂)13
Reference14

Experimental Section

Synthesis of Spherical nanocrystalline particulate TiO₂ (NPTiO₂)

Anatase TiO₂ nanocrystallites paste were synthesized according to a procedure that was modified from a previously reported sol-gel method.¹ 60 mL deionized water and 0.42 mL concentrated HNO₃ (about 70%) was mixed in an Erlenmeyer flask at room temperature. With vigorous stirring, 10 mL titanium tetraisopropoxide Ti(*i*-OPr)₄ was added dropwise into the flask in 10-20 min. A powdery white precipitate was observed and the mixture was then heated to 90-96 °C for roughly 7 hours till the volume of the solution reached 18 mL. During this time, the precipitate dissolved and become translucent grayish blue. The solution was then transferred into a 25 mL acid digestion bomb and heated at 200 °C for 12 hours. After cooling to room temperature, the resulting glue-looking substance was stirred continuously for at least 12 hours after adding 1.0 g of finely ground carbowax.

Spherical nanocrystalline particulate TiO₂ film (NPTiO₂) were deposited by solgel spin coating method onto glass substrates. The above prepared paste diluted 5 times with water was dropped onto pre-FTO substrate, which was rotated at 3000 rpm for 60 s by using SETCAS LLC KW-4A spin coater. The films were then allowed to dry for about 30 min. They were then transferred into a box furnace and heated under air at 450 °C for 30 min. The films were either used immediately or stored in the dark at 70 °C. The thick of film is about 800 nm as measured in cross section by SEM, as shown in Fig. S1.

Spectroelectrochemistry was performed on a CHI 760E electrochemical workstation and Agilent Cary 60 spectrometer. A typical three electrode cell was used with $FTO|TiO_2|RuP$ as the working electrode, Ag/AgCl as the reference electrode and Pt wire as the counter electrode. N₂ degassed acetonitrile with 0.1 M TBAP was used as the supporting electrolyte. Spectra at specific potentials were recorded once the spectra after multiple scans stabilized.

Figure S1-S8

Fig. S1 TEM images of TiO_2 arrays reacted for 48 h (the smooth ultrathin nanowire TiO2 arrays, UW-TiO₂ arrays).

Fig. S2 XRD pattern of UCW-TiO₂.

Fig. S3 Side-view of the SEM image of NPTiO₂ on FTO.

Fig. S4 Electrochemical impedance spectroscopy of UCW-TiO2 and NPTiO2 under white light illumination in 0.1 M tetrabutylammonium perchlorate (TBAP) acetonitrile solution.

Fig. S5 A calculated example of IMPS spectrum, various properties (e.g. charge transfer rate constant, surface recombination rate constant) can be obtained based on the multiple points of such spectrum.

Fig. S6 (A) PEC BA oxidation reaction over a UCW-TiO₂ photoanode in the presence of various radical scavengers for 15 h, BQ as a O_2^{-} radical scavenger, 5 mM; NaIO₃ as an e⁻ scavenger, 30 mM; TEOA as a h⁺ scavenger, (10% v/v). (B-D) Conversion and corresponding selectivity of BAD under different reaction atmospheres (argon, air, and O_2) at the same reaction time.

Fig. S7 The chopped photocurrent responses of the UCW-TiO₂ photoanode for BA oxidation under different reaction atmosphere (argon, air, and O_2).

Fig. S8 UV–Vis spectra of NPTiO₂ and UCW-TiO₂ electrodes on FTO: pristine NPTiO₂ (red line) and UCW-TiO₂ (blue line), RuP sensitized UWTiO₂ (green line), and NPTiO₂ (black line).

Substrate	Conversion (100%)	Selectivity (100%)	Time (h)
4-methylbenzyl alcohol	91.5	92.1	10
4-Methoxybenzyl alcohol	92.6	90.7	10
4-bromobenzyl alcohol	86.3	89.7	10
4-Nitrobenzyl alcohol	83.7	87.5	10

Table S1 Comparison of the conversion, selectivity of BA molecules with different substituents over UCW-TiO₂ photoanodes.

Synthesis of [Ru(4,4'-(PO₃H₂)₂-2,2'-bipyridine)(2,2'-bipyridine)₂]²⁺ (RuP)

Scheme S1: photosensitizer RuP synthesis.

The Ruthenium phosphorate photosensitizer synthesis was synthesized via three steps as illustrated in above Scheme S1, which was refered to reported with slight modification². The only slight modification was step 3 with NH₄PF₆ as additive. The NH₄PF₆ not only provided exchangable polyfluoro anion PF₆⁻ that faciliated percipitation, but also provided Brønsted acid NH₄⁺ that smoothly hydrolyzed the PO(OEt)₂ group into -PO(OH)₂.² Protocol details were the following. Into a 25 mL round bottle layered *cis*-**Ru(bpy)₂Cl₂ (120 mg, 0.25 mmol), bpy-P (92 mg, 0.25 mmol),** NH₄PF₆ (163 mg, 1 mmol), and dissolved by EtOH (15 mL). The resultant thin bottle was bubbled by nitrogen flow for half an hour, and sealed, stirred and heated at 120 °C for 10 hours. After finished, the mixture was concentrated under reduced pressure, dried under vacuum. The afforded crude mixture was purified by several crystallization via MeOH/Et₂O, which afforded the desired **RuP** in red solid (120 mg, 50%). ¹H NMR (400 MHz, D₂O) δ 8.72 (t, *J* = 10.2 Hz, 1H), 8.59 – 8.43 (m, 2H), 8.01 (dd, *J* = 16.2, 8.4 Hz, 2H), 7.93 – 7.85 (m, 1H), 7.78 (t, *J* = 5.8 Hz, 2H), 7.54 (dd, *J* = 11.2, 5.5 Hz, 1H), 7.39 – 7.29 (m, 2H); ³¹P NMR (162 MHz, D₂O) δ 6.7 (m, *-PO*(OH)₂), -144.66 (penta, *J* = 1393.4 Hz, *P*F₆⁻). The NMR spectra were in good agreement with the literature².

Fig. S9¹H NMR spectrum of RuP.

Fig. S10 ¹³C NMR spectrum of RuP.

Synthesis of phosphate-containing ligand (3-(pyridin-4-yl)propyl)phosphonic acid (Py-C3-PO(OH)₂)

Scheme S2: synthetic route to (3-(pyridin-4-yl)propyl)phosphonic acid (Py-C3-PO(OH)₂)

4-(3-bromopropyl)pyridine (**Py-C3-Br**) was synthesized according to the corresponding reference³. While the bromide was phosphonated via Arbuzov reaction with P(OEt)₃, which quantitatively forged the Py-C3-PO(OEt)₃, and further hydrolysis to the target (3-(pyridin-4-yl)propyl)phosphonic acid [**Py-C3-PO(OH)**₂] was referred to the related literature², which resulted in colorless to slight yellow oil (410mg, two steps, 60% yield). ¹H NMR (400 MHz, DMSO) δ 8.85 (d, *J* = 6.4 Hz, 2H, H₁), 7.98 (d, *J* = 6.2 Hz, 2H, H₂), 2.99 (t, *J* = 7.5 Hz, 2H, H₄), 1.94 – 1.77 (m, 2H, H₆), 1.60 – 1.44 (m, 2H, H₅); ¹³C NMR (101 MHz, DMSO) δ 163.28 (C-1), 141.83(C-2), 127.45 (C-3), 35.89 (d, *J* = 15.7 Hz, C-4), 27.08 (d, *J* = 136.9 Hz, C-6), 23.76 (d, *J* = 3.7 Hz, C-5); ³¹P NMR (162 MHz, DMSO) δ 25.98 – 24.48 (m).

Fig. S11 ¹H NMR spectrum of (3-(pyridin-4-yl)propyl)phosphonic acid (Py-C3-PO(OH)₂).

Fig. S12 ¹³C NMR spectrum of (3-(pyridin-4-yl)propyl)phosphonic acid (Py-C3-PO(OH)₂).

Fig. S13 ³¹P NMR spectrum of (3-(pyridin-4-yl)propyl)phosphonic acid (Py-C3-PO(OH)₂).

Synthesis of water oxidation catalyst (Ru(bda)(4-MeOPy)₂)

Synthesis of Water oxidation catalyst methoxypyridine)₂), Ru(bda)(4-MeOPy)₂)

t (Ru(2,2'-bipyridine-6,6'-dicarboxylate)(4-

Scheme S3: synthetic route to Ru(bda)(4-MeOPy)₂

The compound was synthesized according to previous work of our group.⁴ In brief, into a flame-dried Schlenk tube was layered 2,2'-bipyridine-6,6'-dicarboxylic acid (H₂bda, 97.6 mg, 0.4 mmol), *cis*-Ru(DMSO)₄Cl₂ (193.2 mg, 0.4 mmol), TEA (Triethylamine, 0.5 mL) and methanol (30 mL). The resultant reaction tube was sealed, evacuated, refilled with nitrogen and heated to 80 °C for 1 hour, then an excess of 4methoxy pyridine (109 mg, 1 mmol) was added via syringe, the mixture was heated at 80 °C overnight. The reaction mixture was concentrated under reduced pressure, and the left residue was applied on silica gel chromatography (DCM/MeOH, 100/1~100/3), which afforded the desired product as dark red solid named Ru(bda)(4-MeOPy)₂ (160 mg, 71%). The complex was stored under nitrogen atmosphere.

Reference

- 1. T. A. Heimer, S. T. D'Arcangelis, F. Farzad, J. M. Stipkala and G. J. Meyer, *Inorg. Chem.*, 1996, **35**, 5319-5324.
- M. R. Norris, J. J. Concepcion, C. R. K. Glasson, Z. Fang, A. M. Lapides, D. L. Ashford, J. L. Templeton and T. J. Meyer, *Inorg. Chem.*, 2013, 52, 12492-12501.
- P. L. Ornstein, J. M. Schaus, J. W. Chambers, D. L. Huser, J. D. Leander, D. T. Wong, J. W. Paschal, N. D. Jones and J. B. Deeter, *J. Med. Chem.*, 1989, 32, 827-833.
- 4. F. Niu, Q. Zhou, R. Liu and K. Hu, ACS Appl. Energy Mater., 2022, 5, 1244-1251.