Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information

High Photoactive Black Phase Stability of CsPbl₃ Nanocrystals under

Damp-heat Conditions of 85°C and 85% Relative Humidity

Shengwen Zou^a, Jun Kang^b, Yuzheng Zhang^a, Mingjing Qi^a, Xiaojun Yan^a, Xiaoliang Zhang^a and Jianmei Huang^{a,*}

^a School of Energy and Power Engineering, Beihang University, Beijing 100191, China ^b Beijing Computational Science Research Center, Beijing 100193, China

Figure S1. XRD pattern analysis of undoped and doped (Ni-3.65%) CsPbI₃ NCs.

Figure S2. TEM image and size distribution statistics of undoped CsPbI₃ NCs.

Figure S3. TEM images and size distribution statistics of (a) Ni-1.25%, (b) Ni-3.65%, (c) Ni-4.42%, (d) Ni-5.28% CsPbI₃ NCs.

Figure S4. HRTEM image and corresponding FFT of Ni-1.25% $CsPbI_3 NCs$.

Figure S5. EDS spectrum of Ni-3.65% $CsPbI_3 NCs$.

Figure S6. Full spectrum of the $85^{\circ}C/85\%$ RH damp-heat stability test of undoped and doped CsPbI₃ NCs films.

Figure S7. The stability of doped (Ni-3.65% CsPbI₃ NCs, left) and undoped (right) CsPbI₃ NCs solutions mixed with equal volume of water, the solutions were intensely sloshed by stirrers in the whole test process.

Figure S8. Doped (Ni-3.65% CsPbI₃ NCs, left) and undoped (right) CsPbI₃ NCs films soaking in the water.

Figure S9. The stability of doped (Ni-3.65% CsPbI₃ NCs, left) and undoped (right) CsPbI₃ NCs films soaking in water.

Figure S10. The stability of doped and undoped CsPbI₃ NCs solutions under ambient condition.

Figure S11. DFT calculation results. (a) Stability regions of Cs, Pb, and I compounds against Cs and Pb chemical potentials. The shaded region is the stability region for the synthesis of CsPbI₃, and the different patterns indicate whether the formation of Ni_{Cs} or Ni_{Pb} is preferred. The formation of Ni_i is not favored over the whole region. (b) Crystal formation energies of CsPbI₃ with different Ni/Pb doping concentrations.

Figure S12. Absorption spectrum (a) and photoluminescence (PL) spectrum (b) of the undoped $CsPbI_3$ and Ni^{2+} doped $CsPbI_3$ (4% Ni/Pb) bulk films.

Figure S13. XRD pattern of the undoped CsPbI₃ and Ni²⁺ doped CsPbI₃ (4% Ni/Pb) bulk films.

Figure S14. Stabilities of the Ni²⁺ doped CsPbI₃ (4% Ni/Pb) and undoped CsPbI₃ bulk films at 150 $^{\circ}$ C under the N₂ atmosphere.

Figure S15. Stabilities of the Ni²⁺ doped CsPbI₃ (4% Ni/Pb) and undoped CsPbI₃ bulk film at 85 $^{\circ}$ C under the N₂ atmosphere.

Samples	Nil ₂ /Pbl ₂	Reaction Temperatures (°C)	ICP-MS results (Ni/Pb)	Sizes (nm)
undoped	0:1	170	-	15.23
Ni-1.25%	1:1	170	0.0125:1	11.08
Ni-3.65%	3:1	170	0.0365:1	6.95
Ni-4.42%	3:1	185	0.0442:1	7.76
Ni-5.28%	3:1	200	0.0528:1	10.03

Table S1. ICP-MS results of Ni doped CsPbI₃ NCs with different reaction temperature and NiI₂/PbI₂ loading ratio.

Table S2. Fitted TRPL decay results, average lifetimes (τ_{ave}), PLQYs, radiative (Γ_{rad}) and nonradiative ($\Gamma_{non-rad}$) decay rates of undoped and doped NCs. Crystal sizes were also given. The methods of calculation referenced previous study¹. The bi-exponential function was used to fit the decay curves except Ni-3.65% CsPbI₃ NCs, because it sufficient to be fitted with a single-exponential function for Ni-3.65% CsPbI₃ NCs.

Samples	A1	τ1 (ns)	A2	τ2 (ns)	τave (ns)	PLQY (%)	Γrad (μs⁻¹)	Γnon-rad (μs ⁻¹)	Sizes (nm)
undoped	0.66	22.97	0.33	106.34	81.08	0.31	3.88	8.45	15.23
Ni-1.25%	0.82	26.97	0.21	95.54	59.27	0.57	9.56	7.31	11.08
Ni-3.65%	1.03	18.94	0.00	0.00	18.94	0.88	46.31	6.50	6.95
Ni-4.42%	0.89	26.59	0.15	84.21	46.93	0.64	13.66	7.65	7.76
Ni-5.28%	0.84	28.62	0.19	94.78	57.34	0.59	10.24	7.20	10.03

1. Z.-J. Yong, S.-Q. Guo, J.-P. Ma, J.-Y. Zhang, Z.-Y. Li, Y.-M. Chen, B.-B. Zhang, Y. Zhou, J. Shu, J.-L. Gu, L.-R. Zheng, O. M. Bakr and H.-T. Sun, *J. Am. Chem. Soc.*, 2018, **140**, 9942-9951.