Supporting Information

Highly selective Photocatalytic CO₂ Reduction via a Leadfree Perovskite/MOF Catalyst

Na Li, Xin-Ping Zhai, Bo Ma, Hui-Jie Zhang, Ming-Jun Xiao, Qiang Wang,* Hao-Li Zhang*

State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.

Correspondence authors:

qiangwang@lzu.edu.cn (Q.W.); haoli.zhang@lzu.edu.cn (H.-L.Z.)

1. Experimental Section

1.1 Materials: Chemicals

CsBr and BiBr₃ were purchased from Aladdin Chemistry Co. Ltd. tetrakis(4carboxyphenyl)porphyrin and Zirconyl chloride octahydrate were purchased from Aladdin Chemistry Co. Ltd. Dimethyl sulfoxide (DMSO) was from Tianjin Rianlon Corporation Pharmaceutical& Chemical Co. Ltd. isopropanol was from Guangdong Fine Chemicals Engineering Technology Research Center Co. Ltd. All solvents and chemicals were used without any further purification. Deionized water with resistivity of 18.3 M Ω •cm was used to prepare aqueous solution throughout the experiment.

2. Photoelectrochemical Measurements

Photocurrent measurements were performed using a standard three-electrode cell with the as-prepared sample films as the working electrode, a platinum foil as the counter electrode, and a saturated Ag/AgCl as the reference electrode. 0.05 M tetrabutylammonium hexafluorophosphate (TBAPF₆)/ethyl acetate solution was filled in the quartz cell as the electrolyte. The photocurrents were recorded on a Zennium electrochemical workstation (Zahner) under irradiation of a 300 W Xe lamp (AM1.5G, and 100 mW·cm⁻²) at open circuit voltage.

3 Characterization methods

Spectroscopic measurement

The UV/Vis absorption spectra were obtained on a TU-1810 Spectrophotometer (Beijing Purkinje General Instrument, China). FTIR spectra were collected on a VERTEX 70V instrument. Both LS 55 fluorescence spectrometer (Perkin-Elmer) and for the femtosecond broadband pump-probe spectroscopy, the laser source was a Coherent Legend Elite regenerative amplifier (1 KHz, 800 nm) that was seeded by a Coherent Chameleon oscillator (110 fs, 80 MHz). Cs₃Bi₂Br₉ QDs and Cs₃Bi₂Br₉/MOF-525-Co were respectively drop-casted on quartz glasses as films for the transient

absorption tests. TCPP, MOF525 and MOF 525Co were dispersed in the DMF solvent for testing. All of the measurements were performed at room temperature unless otherwise specified.

Other characterizations

The TEM micrographs were obtained using Talos F200S Field Emission Transmission Electron Microscopes (FEI, USA) at operating voltages of 200 kV, respectively. Powder X-ray diffraction (XRD) patterns of the products were recorded on a Panalypical X' Pert PRO diffract meter using Cu K α X-rays between 5° and 50°. X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) measurements were performed on an AXIS Ultra instrument.

The Co contents of composites were analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES, 5110, Agilent Technologies Inc., USA).

Scheme S1. Synthesis of Composite Catalysts Cs₃Bi₂Br₉/MOF 525 Co

MOF 525MOF 525 CoFig. S1. More representative TEM images of (a) MOF525, (b) MOF525Co.

Fig. S2. The corresponding XRD patterns (a), UV-Vis spectra (b) and FT-IR spectra (c) of MOF525, MOF525Co, (d) Steady-state PL spectra of the TCPP, MOF525 and MOF525Co with an excitation wavelength of 375 nm.

Fig. S3. Photocatalytic performance of for CO_2 reduction CH_4 yield (a) using different catalysts; (b) product yields within 7 h, (c) using MOF 525 and MOF525 Co catalysts, (d) Long-time catalytic stability of $Cs_3Bi_2Br_9$ QDs and the $Cs_3Bi_2Br_9/MOF$ 525-Co (0.03 wt% Co).

Fig. S4. Gas chromatography-mass spectrometric (GC-MS) analysis for solar-driven oxidation of $H_2^{18}O$ to ${}^{18}O_2$ (m/z = 36) using Cs₃Bi₂Br₉/MOF 525-Co (0.03 wt% Co) as a photocatalyst.

Apparent quantum efficiency (AQE) measurement

The AQE was measured according to the previous reported method.^[1] We measured the AQE using the same experimental setup, but with 420 nm LED light source to obtain monochromatic light and the equation as follows:

 $AQE(\%) = \frac{Number of reacted electrons (N_{electron})}{Number of incident photons (N_{photon})} \times 100$

The calculation of $N_{electron}$ is based on the fact that two electrons are required to produce one molecule CO, while 8 electrons for the one molecule CH₄, according to the equations mentioned in the manuscript. For Cs₃Bi₂Br₉/MOF 525 Co (0.03 wt% Co) catalyst, the CO and CH₄ production were 3.4 µmol and 0.2 µmol with 420 nm monochromatic light.

So, $N_{electron}=2N$ (CO) +8N (CH₄) =2*3.4 µmol + 8*0.2 µmol =8.4 µmol Number of incident photons are calculated using the following equations:

$$N_{photon} = \frac{Light intensity * Illumination area * Time}{Average single photonenergy * N_A}$$

$$= \frac{100 \ mw \cdot cm^{-2} * 9.62 \ cm^2 * 3600 \ s}{\frac{6.625 \times 10^{-34} J \cdot s * 3 \times 10^{17} \ nm \cdot s^{-1}}{420 \ nm}} * 6.022 \times 10^{23} \ mol^{-1}$$

$$= 12155 \ \mu mol$$

where the illumination area is controlled to 9.62 cm², N_A is the Avogadro constant and the average single photon energy (E_{photon}) is figured out using the equation: $E_{photon}=hc/\lambda$, where h is the Planck constant, c indicates speed of light, and λ is the wavelength.

$$AQE(\%) = \frac{8.4 \ \mu mol}{12155 \ \mu mol} \times 100 = 0.07\%$$

Finally,

Under the same experimental conditions, for $Cs_3Bi_2Br_9$ QDs, the CO and CH_4 production were 2.4 µmol and 0.1 µmol.

Fig. S5. The Tauc plot of $Cs_3Bi_2Br_9$ QDs (a) and MOF 525 Co (b) The Ultraviolet photoelectron spectra of $Cs_3Bi_2Br_9$ QDs (c) and MOF 525 Co (d).

Fig. S6. The proposed photocatalytic procedure and electronic bandgap information for the type II heterojunction.

Table S1. A summary of the photocatalytic CO_2 reduction performance by metal halide
perovskites photocatalysts.

Photocatalysts	Reaction condition	Light source	Products/ µmol g ⁻¹ h ⁻¹	R _{electron} / μmol g ⁻¹ h ⁻¹	CO Selectivity (%)	Ref
Cs ₃ Bi ₂ Br ₉ /MOF-525- Co (0.03 wt% Co)	CO ₂ and Water Vapor	AM 1.5G, 100 mW cm ⁻²	CH ₄ : 0.3 CO: 61.2	124.8	99.5	This work
Cs ₂ CuBr ₄ QDs	CO ₂ and Water Vapor	300W Xe AM1.5G	CH ₄ : 14.96 CO: 29.8	179.29	33.4	ACS Catal. 2022, 12, 2915-2926
$Cs_3Bi_2I_9$ QDs	Gas (CO ₂ +H ₂ O)	32 W UV Lamp 305 nm 80.38 μW/cm ²	CO: 7.8 CH ₄ : 1.5	27.6	83.8	J. Am. Chem. Soc., 2019, 141, 20434- 20442.
$M_{A3}Bi_2I_9QDs$	Gas (CO ₂ +H ₂ O)	32 W UV Lamp 305 nm 80.38 μW/cm ²	CO: 0.7 CH ₄ : 1.0	9.4	41	J. Am. Chem. Soc., 2019, 141, 20434- 20442.
Rb ₃ Bi ₂ I ₉ QDs	Gas (CO ₂ +H ₂ O)	32 W UV Lamp 305 nm 80.38 μW/cm ²	CO: 1.8 CH ₄ : 1.7	17.2	51	J. Am. Chem. Soc., 2019, 141, 20434- 20442.
Cs ₃ Bi ₂ I ₉ QDs	Toluene	300 W Xe lamp AM1.5G	CO: 1.1	2.2	100	ACS Nano 2020, 14, 13103-13114
Cs ₃ Bi ₂ Br ₉ QDs	Toluene	300 W Xe lamp AM1.5G	CO: 26.9	53.8	100	ACS Nano 2020, 14, 13103-13114
Cs ₃ Bi ₂ Cl ₉ QDs	Toluene	300 W Xe lamp AM1.5G	CO: 16.6	33.2	100	ACS Nano 2020, 14, 13103-13114
Cs ₃ Bi ₂ Br ₉ @M-Ti	Isopropanol	300 W Xe lamp, 70 mW·cm ⁻²	CH ₄ : 28.8 CO: 4.84	240.08	85.6	Angew. Chem. Int. Ed., 2022, 61, e202200872.
$In_4SnS_8/\\Cs_3Bi_2Br_9$	Gas-solid reactor	300 W Xe lamp >420 nm	CO: 9.55	19.1	100	Applied Catalysis B: Environmental 313 (2022) 121426
Cs ₃ Bi ₂ I ₉ /CeO ₂	Gas (CO ₂ +H ₂ O)	300 W Xe lamp 100 mW/cm ²	CH ₄ : 5.8 CO: 14	74	70.7	J. Energy Chem. , 2022, 69, 348-355.
Cs_2SnI_6/SnS_2	Gas (CO ₂ +H ₂ O+ CH ₃ OH)	100 W Xe lamp >400 nm 150 mW/cm ²	CH ₄ : 2.0	16.0	0	J. Am. Chem. Soc. 2019, 141, 13434- 13441
$Cs_3Bi_2I_9/Bi_2WO_6$	Gas	300 W Xe lamp	CO: 7.3	14.6	100	

	(CO_2+H_2O)	100 mW/cm^2				Sol. RRL, 2021, 5, 2000691.
Cs2AgBiBr6NC	EA	AM 1.5G, 150	CH ₄ : 2.35	22	40	Small 2018, 14,
		$\rm mW~cm^{-2}$	$mW cm^{-2}$ CO: 1.6		40	1703762
Cs ₂ AgBiI ₆	CO ₂ and	300 W Xe lamp	CO: 6.3	12.6	100	Chem. Mater. 2021,
	H ₂ O Vapor	420nm				33, 13, 4971–4976
$C_{a} \wedge a \mathbf{D} C_{a}^{\dagger}$	CO ₂ and		CO: 454	9.08	100	
Cs ₂ AgBiCl ₆	H ₂ O Vapor	-	0: 4.54			-
$Cs_2AgBi(Br_{0.5}I_{0.5})_6$	CO ₂ and		CO: 2.00	7.92	100	
	H ₂ O Vapor	-	CO: 3.90			-
Cs2AgInCl6@Ag	EA	300 W Xe lamp		CH ₄ : 4.66 47 CO: 4.86	51	Sustainable Energy
			$CH_4: 4.00$			& Fuels 2021, 5
			CO: 4.80			(14), 3598-3605
Cs ₂ AgBiBr ₆ /Ce-UiO-	CO and	200W Vo	CO: 200.01	444.62	99	Chem. Eng. J.,
	CO_2 and	500W Xe	CO. 309.01			2022, 446, 137102.
66	H_2O Vapor	AMI.5G	CH ₄ : 0.71			
	EA + Water					Chem Eng J
Cs ₂ AgBiBr ₆ /Sr ₂ FeNb O ₆		300W Xe Lamp	CH ₄ : 8.12	164.96	86	2022 AA6 137107
		$\lambda \ge 420 nm$	CO: 50	104.90		2022, 440, 137177
	EA+ ⁵ Isopropanol	300W Xe Lamp	CH ₄ : 0.41		99	Journal of Colloid
Ca A aDiDa //Di WO				0766		and Interface
CS2AgBiB16//Bi2wO6			CO: 42.19	87.00		Science, 2023, 629,
						233-242.
Ca NaDiCi	CO_2 and $CO_2 = CO_2 + CO_2$		CH ₄ : 1.2	(0.4	06	Adv. Energy Mater.
CS2NaBICI6	H_2O Vapor 300	SOUW AE Lamp	CO: 30	09.4	90	2022, 2202074

The catalytic performances of samples were calculated according to the total weight of materials.

The electron consumption yield was calculated with the following equation:

 $Yieldelectron = 2YieldCO + 8YieldCH_4$

The CO selectivity was calculated from the product yield as follows: CO selectivity = $R(CO)/[R(CO) + R(CH_4)] \times 100\%$, where R_{CO} and R_{CH4} represent the production rates of CO and CH₄, respectively.

Sample	Wavelength(nm)	$\tau_1(A_1)$	$\tau_2 (A_2)$	$ au_{3}\left(A_{3} ight)$
Cs ₃ Bi ₂ Br ₉ QDs	455 nm	2.9 ps (55.7%)	45.9 ps (29%)	13 ns (15.3%)
Cs ₃ Bi ₂ Br ₉ /MOF 525-Co	450 nm	2.6 ps (70.3%)	34.3 ps (21.4%)	7.5 ns (8.3%)
$Cs_3Bi_2Br_9QDs$	468 nm	8.0 ps (49.3%)	40.6 ps (22.4%)	15.9 ns (28.3%)
Cs ₃ Bi ₂ Br ₉ /MOF 525-Co	471 nm	9.1 ps (84.3%)	22.3 ps (3.9%)	12.6 ns (11.8%)

Fig. S7. Representative spectra at different delay time for TCPP(a) and MOF 525 (c) in the range of 200 fs-5 ns excited at 400 nm. Decay curves are normalized to the maximum signals at wavelengths of \sim 472 nm (b) and \sim 770 nm (d).

_					
	Sample	Wavelength(nm)	$\tau_1(A_1)$	$\tau_2(A_2)$	$\tau_3(A_3)$
	MOF 525	472 nm (S band)	7.1 ps (26.1%)	133 ps (50.2%)	>ns (23.7%)
	TCPP	472 nm (S band)	124 fs (37.6%)		>ns (62.4%)
	MOF 525	532 nm (Q1 band)	15.6 ps (31.2%)	156 ps (40.4%)	>ns (28.4%)
	ТСРР	518 nm (Q1 band)	10.7 ps (7.9%)	4.0 ns (-39.6%)	>ns (52.5%)
	MOF 525	567 nm (Q2 band)	8.9 ps (24.7%)	111 ps (42.3%)	>ns (33%)
	ТСРР	554 nm (Q2 band)			>ns (100%)
	MOF 525	779 nm	21.1 ps (22.2%)	466 ps (61.3%)	>ns (16.5%)

Table S3. Fitted lifetime componnets of TCPP and MOF 525.

Fig. S8. Proposed dynamic steps within MOF525 upon photoexcitation. Herein the fitted lifetime at 472 nm (S band) at the 472 nm is taken as an example.

$$CO_{2} \longrightarrow CO_{2}^{*}$$

$$H_{2}O \longrightarrow H^{+} + OH^{-}$$

$$CO_{2}^{*} + e^{-} + H^{+} \longrightarrow COOH^{*}$$

$$COOH^{*} + e^{-} + H^{+} \longrightarrow CO^{*} \text{ or } CH_{3}^{*}O + H_{2}O$$

$$CO^{*} + e^{-} + H^{+} \longrightarrow CO$$

$$CH_{3}^{*}O + e^{-} + H^{+} \longrightarrow CH_{4} + O^{*}$$

Scheme S2. The conversion process of photocatalytic CO₂ reduction^[2]

References

 Fang, Z.-B.; Liu, T.-T.; Liu, J.; Jin, S.; Wu, X.-P.; Gong, X.-Q.; Wang, K.; Yin, Q.; Liu, T.-F.; Cao, R.; Zhou, H.-C., Boosting Interfacial Charge-Transfer Kinetics for Efficient Overall CO₂ Photoreduction via Rational Design of Coordination Spheres on Metal–Organic Frameworks. *J. Am. Chem. Soc.* 2020, *142* (28), 12515-12523.

[2] Ding, L.; Bai, F.; Borjigin, B.; Li, Y.; Li, H.; Wang, X., Embedding Cs₂AgBiBr₆ QDs into Ce-UiO-66-H to in situ construct a novel bifunctional material for capturing and photocatalytic reduction of CO₂. *Chem. Eng. J.* **2022**, *446*, 137102.