Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Initiating highly efficient (Bi,Ce)₂(O,S)_{3-x} oxysulfide catalyst with rich oxygen vacancies for hydrogen evolution via adjusting valence band configuration

Xiaoyun Chen^{1,*}, Qinhan Wu¹, Dong-Hau Kuo^{2,*}, Adugna Boke Abdeta¹, Hanya Zhang¹, Ping Li¹, Ting Huang¹, Osman Ahmed Zelekew³, Jinguo Lin^{1,*}

¹College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China

²Department of Materials Science and Engineering, National Taiwan University of Science and Technology,

Taipei 10607, Taiwan

³Department of Materials Science and Engineering, Adama Science and Technology University, Adama, Ethiopia

*Corresponding author

E-mail address: <u>dhkuo@mail.ntust.edu.tw</u> (D.-H. Kuo)

E-mail address: fjlinjg@126.com (J. G. Lin)

E-mail address: <u>fjchenxy@126.com</u> (X. Y. Chen)

Experimental Section

1. Apparent quantum efficiency computation

According to the literature reports [1, 2] for measuring the apparent quantum efficiency (AQE). In the experiment, the 420 nm (λ) monochromatic light, the 2.36 mW·cm⁻² average intensity of irradiation (I), and the 32.15 cm² irradiation area (A) were used. The total H₂ evolution with 20 mg of BiCeOS catalyst was 473.75 µmol, which can be used to determine the number of reacted photons (N_{reac}). The number of photons (N_{in}) illuminated to reactor is computed according to the follow equations:

$$N_{in} = \frac{E \cdot \lambda}{h \cdot c} = \frac{(A) \cdot (I) \cdot (t) \cdot \lambda}{h \cdot c} = \frac{32.15 \times 2.36 \times 10^{-3} \times 3600 \times 5 \times 420 \times 10^{-9}}{6.626 \times 10^{-34} \times 3 \times 10^8} = 2.886 \times 10^{21}$$
$$AQE = \frac{N_{reac}}{N_{in}} \times 100\% = \frac{2 \times 6.02 \times 10^{23} \times 473.75 \times 10^{-6}}{2.886 \times 10^{21}} \times 100\% = 19.76\%$$

Where: *h*, *c*, and *t* are Planck constant, light speed under vacuum, and illumination time (s), respectively.

2. Density functional theory calculation

DFT computation was performed with the Vienna ab initio simulation package (VASP) by using the projector augmented wave (PAW) function method [3]. A plane-wave basis set was adopted to expand the smooth part of wave functions. The generalized gradient approximation (GGA) with Perdew–Burke-Ernzerhof (PBE) function was used for considering the electron exchange and correlation effect [4, 5]. A $2 \times 2 \times 2$ supercell with 80 atoms was adopted for structures considered in this study. Dispersion correction (DFT-D3) proposed by Grimme was employed to accurately describe the Van-Der-Waals force. In the process of geometry optimization, atomic relaxation was considered by referring to the Hellmann-Feynman force smaller than 0.02 eV/Å. The convergence criterion was set to have low energy of 1×10^{-5} eV during the electronic self-consistent loop. The Brillouin-zone integration used the gamma-centered ($2 \times 2 \times 1$) k-point grids for the geometry optimization [6].

3. Cycle voltammetry (CV) curve for calculation of conduction band (CB) and valence band (VB).

The CB and VB levels are calculated with the following Equations [7-9].

$$E_{CB} = -[4.8 + (E_{onset}^{ox} - E_{Ox})] eV$$
(1)

$$E_{VB} = -[4.8 + (E_{onset}^{red} - E_{Ox})] eV$$
⁽²⁾

where the E_{onset}^{ox} , E_{onset}^{red} , and E_{ox} are the onset potentials for oxidation and reduction reaction of BiCeOS-3, and for the oxidation reaction of electrolyte, respectively.

Additional figures and tables

Fig. S1 the indirect bandgap $(\alpha h v)^{1/2}$ - h v plot from the ultraviolet visible absorption spectra of

CeOS, BiOS, and BiCeOS catalysts.

Fig. S2 Mott–Schottky curves of BiCeOS conducting at 1000 Hz.

Fig. S3 Current density of BiCeOS, BiOS and CeOS under different scan rates.

Fig. S4 The dependence of AQE as a function of irradiation wavelength and UV-Vis absorption spectrum of BiCeOS-3.

Table S1 XPS composition	and physical	characteristics of B	BiCeOS catalysts	prepared with different
--------------------------	--------------	----------------------	------------------	-------------------------

Catalyst	Molar percentage/%			Ce molar percentage /%		Ce ³⁺ /Ce ⁴⁺	O molar percentage /%		V _O /O _{Lattice}	S _{BET}	Crystal	
	Bi	Ce	S	0	Ce ³⁺	Ce ⁴⁺	(%)	O _{Lattice}	V_O	(%)	(m ² /g)	size/nm
BiCeOS-1	37.28	6.07	41.28	15.37	3.12	96.88	3.22	97.39	2.61	2.68	31.2	10.7
BiCeOS-2	37.17	6.12	41.31	15.40	16.03	83.97	19.09	90.02	9.98	11.09	32.0	10.5
BiCeOS-3	37.25	6.09	41.17	15.49	39.52	60.48	65.34	84.52	15.48	18.32	30.5	11.0
BiCeOS-4	37.33	6.31	40.08	16.28	47.29	52.71	89.72	92.11	7.89	8.57	28.1	11.3
BiCeOS-3 after reaction	37.28	6.13	41.05	15.54	39.48	60.52	65.23	84.82	15.18	17.89		10.8

N₂H₄ contents

Table S2 Elements contents from SEM-EDS analysis for BiCeOS catalysts

Catalyst	Bi	Ce	S	0	Bi/Ce (%)
BiCeOS-1	36.18	5.67	40.26	17.89	15.67
BiCeOS-2	36.27	5.72	40.18	17.83	15.77
BiCeOS-3	36.00	5.63	40.32	18.05	15.64
BiCeOS-4	35.84	5.83	39.92	18.41	16.17

Catalysts	A_1	τ_1 (ns)	A_2	τ_2 (ns)	\mathbb{R}^2	τ_{avg} (ns)
BiCeOS-1	51.961	1.946	1.406	5.172	0.991	2.162
BiCeOS-2	10.847	2.884	15.061	2.675	0.992	2.766
BiCeOS-3	9.712	3.097	12.528	3.956	0.996	3.632
BiCeOS-4	2.558	3.253	60.445	1.831	0.995	1.930
BiOS	2.181	5.636	587.359	0.928	0.992	1.032

Table S3 The average charge carrier lifetime of BiCeOS catalysts

Table S5 Reports on PHER performance over Bi-based and oxysulfide catalysts under visible light

Catalysts	Sacrificial	Light source	AQE (%)	PHER rate (mmol/g·h)	Ref.
Cr ₂ O ₃ /Rh/IrO ₂ @Y ₂ Ti ₂ O ₅ S ₂	Na ₂ S/Na ₂ SO ₃	300 W Xe lamp	5.3 (420 nm)	0.83	[10]
Pt/La ₅ In ₃ S ₉ O ₃	Na ₂ S/Na ₂ SO ₃	300 W Xe lamp	N/A (420 nm)	0.045	[11]
ZnS _{1-x-0.5y} O _x (OH) _y	Na ₂ S/Na ₂ SO ₃	400 W halide lamp	3.0 (420 nm)	0.08	[12]
InOS	10 vol.% Ethanol	150 W Xe lamp	N/A	0.08	[13]
Ni-doped Mo(S,O) _{3-x}	10 vol.% Ethanol	250 W Xe lamp	29.2 (420 nm)	23.50	[14]
(Ni,In)(S,O) _{2-x}	10 vol.% Ethanol	250 W Xe lamp	26.3 (420 nm)	19.87	[15]
Bi ₅ Ti ₃ CrO ₁₅	NaSO ₃	300 W Xe lamp	3.6 (420 nm)	2.832	[16]
FeS ₂ /Bi ₂ S ₃	Na ₂ S/Na ₂ SO ₃	300 W Xe lamp	12.1 (420 nm)	16.8	[17]
Cd0.5Zn0.5S/Bi2S3	Na ₂ S/Na ₂ SO ₃	300 W Xe lamp	19.6 (420 nm)	16.3	[18]
InBi-MOF	lactic acid	300 W Xe lamp	4.27 (420 nm)	3.6	[19]
Ru/SrTiO3:Rh-(PRGO/BiVO4)	МеОН	300 W Xe lamp	1.03 (420nm)	11.0	[20]
ZnO/Ag/Bi2S3	Na ₂ S/Na ₂ SO ₃	250 W Hg lamp	1.1 (420nm)	0.218	[21]
Bi ₂ S ₃ /MoS ₂ /TiO ₂	Na ₂ S/Na ₂ SO ₃	250 W Xe lamp	N/A	2.23	[22]
Bi ₂ S ₃ /TiO ₂	50 vol% methanol	300 W Xe lamp	N/A	2.46	[23]
MoS ₂ /P25/Bi ₂ S ₃	10 vol% TEOA	350 W Xe lamp	N/A	2.33	[24]
BiOBr/Bi ₂ S ₃	Na ₂ S/Na ₂ SO ₃	300 W Xe lamp	N/A	0.445	[25]
BiCeOS	Na ₂ S/Na ₂ SO ₃	250 W Xe lamp	19.8 (420 nm)	26.33	This work

References:

- [1] Q. Huang, Y. Xiong, Q. Zhang, H. Yao, Z. Li, Noble metal-free MoS₂ modified Mn_{0.25}Cd_{0.75}S for highly efficient visible-light driven photocatalytic H₂ evolution, *Appl. Catal. B-Environ.*, 209 (2017) 514-522.
- [2] M.S. Nasir, G. Yang, I. Ayub, S. Wang, W. Yan, Tin diselinide a stable co-catalyst coupled with branched TiO₂ fiber and g-C₃N₄ quantum dots for photocatalytic hydrogen evolution, *Appl. Catal. B-Environ.*, 270 (2020) 118900.
- [3] J.F. G. Kressea, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, *Comp. Mater. Sci.*, 6 (1996) 15-50.
- [4] K.B. J.P. Perdew, M. Ernzerhof, Generalized gradient approximation made simple, *Phys. Rev. Lett.*, 77 (1996) 3865.
- [5] F.A.A.I.L. V. Anisimov, First-principles calculations of the electronic structure and spectra of strongly correlated systems the LDA+ U method, J. Phys-Condens. Mat., 9 (1997) 767.
- [6] V.V. Anisimov, J. Zaanen, O.K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I, *Physical review. B, Condensed matter*, 44 (1991) 943-954.
- [7] Y. Liu, Y. Zhao, Y. Sun, J. Cao, H. Wang, X. Wang, H. Huang, M. Shao, Y. Liu, Z. Kang, A 4e--2e- cascaded pathway for highly efficient production of H₂ and H₂O₂ from water photo-splitting at normal pressure, *Appl. Catal. B-Environ.*, 270 (2020) 118875.
- [8] C. Liu, Y. Fu, Y. Xia, C. Zhu, L. Hu, K. Zhang, H. Wu, H. Huang, Y. Liu, T. Xie, J. Zhong, Z. Kang, Cascaded photo-potential in a carbon dot-hematite system driving overall water splitting under visible light, *Nanoscale*, 10 (2018) 2454-2460.
- [9] H.V. Jörn Pommerehne, Werner Guss, Rainer F. Mahrt, Heinz Bössler, Michael Porsch, Jörg Daub, Efficient two layer leds on a polymer blend basis, *Adv. Mater.*, 7 (1995) 551-554.

- [10] Q. Wang, M. Nakabayashi, T. Hisatomi, S. Sun, S. Akiyama, Z. Wang, Z. Pan, X. Xiao, T. Watanabe, T. Yamada, N. Shibata, T. Takata, K. Domen, Oxysulfide photocatalyst for visible-light-driven overall water splitting, *Nat. Mater.*, 18 (2019) 827-832.
- [11] O. Kiyonori, I. Akio, T. Kentaro, T. Kenji, H. Michikazu, D. Kazunari, Lanthanum–Indium oxysulfide as a visible light driven photocatalyst for water splitting, *Chem. Lett.*, 36 (2007) 854-855.
- [12] Y. Li, G. Ma, S. Peng, G. Lu, S. Li, Photocatalytic H₂ evolution over basic zincoxysulfide (ZnS_{1-x-0.5y}O_x(OH)_y) under visible light irradiation, *Appl. Catal. A-Gen.*, 363 (2009) 180-187.
- [13] H. Abdullah, N.S. Gultom, D.-H. Kuo, Indium oxysulfide nanosheet photocatalyst for the hexavalent chromium detoxification and hydrogen evolution reaction, *J. Mater. Sci.*, 52 (2017) 6249-6264.
- [14] X. Chen, H. Sun, D.-H. Kuo, A.B. Abdeta, O.A. Zelekew, Y. Guo, J. Zhang, Z. Yuan, J. Lin, Spherical nanoflower-like bimetallic (Mo,Ni)(S,O)_{3-x} sulfo-oxide catalysts for efficient hydrogen evolution under visible light, *Appl. Catal. B-Environ.*, 287 (2021) 119992.
- [15] X. Chen, T. Huang, D.-H. Kuo, H. Sun, P. Li, O.A. Zelekew, A.B. Abdeta, Q. Wu, J. Zhang, Z. Yuan, J. Lin, Material design with the concept of solid solution-type defect engineering in realizing the conversion of an electrocatalyst of NiS₂ into a photocatalyst for hydrogen evolution, *Appl. Catal. B-Environ.*, 298 (2021) 120542.
- [16] Z. Gu, J. Qian, R. Wang, M. Lv, X. Xu, Ch. Luo, Aurivillius compound Bi₅Ti₃CrO₁₅ as a visiblelight-active photocatalyst for hydrogen production from water, *J. Energy Chem.*, 62 (2021) 572-580.

- [17] M. Li, J. Sun, G. Chen, S. Yao, B. Cong, P. Liu, Construction photothermal/pyroelectric property of hollow FeS₂/Bi₂S₃ nanostructure with enhanced full spectrum photocatalytic activity, *Appl. Catal. B-Environ.*, 298 (2021) 120573.
- [18] M. Li, J. Sun, B. Cong, S. Yao, G. Chen, Sulphur vacancies modified Cd_{0.5}Zn_{0.5}S/Bi₂S₃: Engineering localized surface plasma resonance enhanced visible-light-driven hydrogen evolution, *Chem. Eng. J.*, 415 (2021) 128868.
- [19] Q. Zhang, Y. Li, H. Ren, Q. Zhai, C. Zhang, L. Cheng, Engineering full hollow and yolk-shell structures of Z-scheme photocatalysts for advanced hydrogen production, *Chem. Eng. J.*, 408 (2021) 127267.
- [20] A. Iwase, Y.H. Ng, Y. Ishiguro, A. Kudo, R. Amal, Reduced graphene oxide as a solid-state electron mediator in Z-Scheme photocatalytic water splitting under visible light, *J. Am. Chem. Soc.*, 133 (2011) 11054-11057.
- [21] S. Mandal, R. Ananthakrishnan, Double effects of interfacial Ag nanoparticles in a ZnO multipod@Ag@Bi₂S₃ Z-Scheme photocatalytic redox system: Concurrent tuning and improving charge-transfer efficiency, *Inorg. Chem.*, 59 (2020) 7681-7699.
- [22] Q.A. Drmosh, A. Hezam, A.H.Y. Hendi, M. Qamar, Z.H. Yamani, K. Byrappa, Ternary Bi₂S₃/MoS₂/TiO₂ with double Z-scheme configuration as high performance photocatalyst, *Appl. Surf. Sci.*, 499 (2020) 143938.
- [23] H. Lin, K. Zhang, G. Yang, Y. Li, X. Liu, K. Chang, Y. Xuan, J. Ye, Ultrafine nano 1T-MoS₂ monolayers with NiO_x as dual co-catalysts over TiO₂ photoharvester for efficient photocatalytic hydrogen evolution, *Appl. Catal. B-Environ.*, 279 (2020) 119387.

- [24] Y. Xu, J. Xu, W. Yan, H. Tang, G. Tang, Synergistic effect of a noble metal free MoS₂ cocatalyst and a ternary Bi₂S₃/MoS₂/P25 heterojunction for enhanced photocatalytic H₂ production, *Ceram. Int.*, 47 (2021) 8895-8903.
- [25] C. Chang, C. Huang, Y. Yu, M. Teng, C. Chiang, Y. Lin, Electron transfer dynamics and enhanced H₂ production activity of hydrangea-like BiOBr/Bi₂S₃-based photocatalysts with Cucomplex as a redox mediator, *Appl. Surf. Sci.*, 576 (2022) 151870.