Supporting Information

Thermally stable inverted perovskite solar cells using electropolymerized Zn-porphyrin film as dopant-free hole-transporting layer

Yangjie Lan,^{+ab} Yu-Duan Wang,^{+a} Zhong-Rui Lan,^{ac} Yang Wang,^a Bin-Bin Cui,^{*b} Jiang-Yang Shao^{*a} and Yu-Wu Zhong^{*ac}

^aBeijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 2 Bei Yi Jie, Zhong Guan Cun, Haidian District, Beijing 100190, China

^bAdvanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, P. R. China.

^cSchool of Chemical Sciences, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, China.

Corresponding Authors

*shaojiangyang@iccas.ac.cn (J.-Y.S.)

*cui-chem@bit.edu.cn (B.-B.C.)

*zhongyuwu@iccas.ac.cn (Y.-W.Z.);

⁺These authors contribute equally to this work.

Fig. S1. Schematic diagram of the synthesis route of ZnP-TPA

Synthesis of ZnP-TPA

5,10,15,20-tetra(p-bromophenyl)porphyrin zinc (250.0 mg, 0.25 mmol), diarylamines (212.8 mg, 1.25 mmol), Pd₂(dba)₃ (23.0 mg, 0.025 mmol), tri-tert-butylphosphine (0.53 ml, 1M) and sodium tert-butoxide (120.8 mg, 1.25 mmol) were dissolved in toluene (20 mL) and stirred at 120 °C with reflux for 36 h under a nitrogen atmosphere. Followed by the addition of proper amount of water, the resulting solution was extracted with CH₂Cl₂. The combined organic layer was dried over MgSO₄. After removing the solvent under reduced pressure, the residue was purified by silica gel chromatography (eluent: petroleum ether/ dichloromathane, 1/1) to yield 257.3 mg of ZnP-TPA in 75.6% yield. ¹H NMR (300 MHz, CDCl₃): δ 9.10 (s, 8H), 8.06 (d, *J* = 9 Hz, 8H), 7.47-7.37 (m, 40H), 7.13 (m, 8H). MALDI-TOF (m/z): calcd for C₉₂H₆₄N₈Zn 1346.96, found 1347.73.

Fig. S2. Cyclic voltammograms recorded during the oxidative electropolymerization of ZnP-TPA (0.12 mg/mL in CH_2Cl_2) on an indium–tin-oxide (ITO) glass electrode with different scan cycles between 0 and +1.5 V at 100 mV/s.

Fig. S3. Cross-section SEM picture of ITO/PZnP film obtained after 2, 4, 6, 8, 15 and 25 scan cycles.

Fig. S4. Statistical diagrams of PSCs performance based on electropolymerized PZnP and PTAA, including V_{oc} , FF, and J_{sc} (20 devices).

Fig. S5. *J-V* curves of the best-performance of MAPbI3 and MAPb $(I_{0.95}Br_{0.05})_3$ perovskite solar cells.

Perovskite	$J_{\rm sc}$ (mA cm ⁻	$V_{\rm oc}({ m V})$	FF (%)	PCE (%)
MAPbI ₃	21.79	1.11	78.53	19.07
MAPb(I _{0.95} Br _{0.05}) ₃	21.40	1.12	76.68	18.34

Table S1 Summary of PZnP-based device parameters with different perovskite materials

Fig. S6 ¹H NMR spectrum of ZnP-TPA in CDCl₃.