Supplementary Information for

Interdiffused Thermoplastic Urethane–PEDOT:PSS Bilayers with Superior Adhesion Properties for High–Performance and Intrinsically–Stretchable Organic Solar Cells

Jinho Lee,^{†,a} Jin-Woo Lee,^{†,a} Hyunggwi Song,^b Myoung Song,^b Jinseok Park, ^a Geon-U Kim,^a Dahyun Jeong,^a Taek-Soo Kim,^b and Bumjoon J. Kim^{*,a}

^a Department of Chemical and Biomolecular Engineering and ^b Mechancial Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea

*Electronic mail: <u>bumjoonkim@kaist.ac.kr</u>

Experimental Section

Materials

PEDOT:PSS (Clevios PH1000 and Clevios P VP AI 4083) solutions were purchased from Heraeus. Perchloric acid (HClO₄), chlorobenzene (CB), chloroform (CF), methanol, octadecyltrichlorosilane (ODTS), toluene, 3-glycidoxypropyltrimethoxysilane (GOPS), dimethylformamide (DMF), 1-chloronaphthalene (CN), 1,8-diiodoctane (DIO) and dimethyl Sulfoxide (DMSO) were purchased from Sigma-Aldrich. PM6, PCE12, Y6 and Y6-BO were purchased from Derthon. N2200 polymer (Mn: 150 k, PDI: 3.0) and PNDIT-F3N-Br were synthesized. TPU film was received form AFEL. Gallium (Ga, 99.99 % purity) and Indium (In, 99.99 % purity) were obtained from Taewon Scientific.

Preparation of acid-treated electrodes for transfer

ODTS hydrophobic treatment was applied to the glass substrate to facilitate the transfer process. After immersing the plasma-treated glass substrate in a mixture of 50 ml of toluene and 60 μ l of ODTS at room temperature for 30 min, it was washed with acetone and dried in an oven at 80 °C. The PEDOT:PSS (doped with 0.5 vol.% of FS-30, 5 vol.% of DMSO and 0.15 vol.% of GOPS) solution was filtered through a 0.45 μ m polytetrafluorethylene (PTFE) filter, and then deposited on the ODTS treated glass substrate by spin-coating (1000 rpm) and dried at 100 °C in air (thickness: ~150 nm). 4 M HClO4 solution was dropwise to the surface of the PEDOT:PSS film, and immediately washed with a spin-dry process, and dried on a hot plate at 100 °C for 15 min to remove residual acid (thickness: ~113 nm). For the molecular interdiffusion (MID)-assisted poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-thermoplastic urethane (PEDOT:PSS-TPU) layers, the TPU solution (dissolved in DMF at 450 mg mL⁻¹) was spin-coated (4000 rpm) on acid-treated PEDOT:PSS and dried at 100 °C. In the

stamp transfer (ST) method, the pick-and-placed PEDOT:PSS bottom electrode layer was laid to the TPU film while slowly attaching/detaching the TPU film on an 80 °C hot plate.

Device Fabrication

IS-OSCs were fabricated with TPU/acid-treated PEDOT:PSS/AI 4083/active layer/PNDIT-F3N-Br/eutectic gallium indium (EGaIn) structure. The transferred TPU/acid-treated PEDOT:PSS electrode was attached to a glass substrate for use as a bottom electrode. The hole transport layer (HTL, Clevios P VP AI 4083, doped with 0.5 vol.% of FS-30) was spin-coated at 3000 rpm (thickness: ~30 nm) on the plasma-treated bottom electrode and then annealed at 100 °C for 15 min. The active material was coated in a glove box. A blend of PM6:Y6-BO:N2200 with a weight ratio (1:1:0.15) was stirred for at least 3 h in CB at a total concentration of 24 mg mL⁻¹ and then spin-coated at 2500 rpm, 30 s (thickness: ~100 nm) on top of the TPU/acid-treated PEDOT:PSS/AI4083. A blend of PM6:Y6 (1:1.2, w/w) in CF (containing 0.5 vol% of 1-chloronaphthalene (CN)) with a total concentration of 13.5 mg mL⁻ ¹ solution was spuncast at 2500 rpm for 30 s (thickness: ~100 nm). A blend of PM6-OEG5:BTP-eC9 (1:1.2, w/w) in toluene (containing 0.5 vol% of DIO) with a total concentration of 18 mg mL⁻¹ solution was spuncast at 1500 rpm for 30 s (thickness: ~ 110 nm). A blend of PBDB-T:PYBDT-Cl (1:1, w/w) in CB with a total concentration of 20 mg mL⁻¹ solution was spun at 2000 rpm for 30 s (thickness: ~100 nm). All devices coated with the active layer were vacuum ($< 10^{-5}$ torr) dried for 1 h. Then, an electron transport layer (ETL, PNDIT-F3N-Br) solution (total concentration of 1 mg mL⁻¹ in methanol, stirred at room temperature for 3 h) was spin-coated at 3000 rpm for 30 s (thickness: ~5 nm) on the active layer. A top electrode, EGaIn, 75.5 wt% of Ga and 24.5 wt% of In were mixed at 80 °C. To pattern the electrodes, a liquid metal alloy was sprayed (thickness: $\sim 100 \ \mu m$) onto the ETL layer using a

shadow mask.

Characterizations

The transmission spectrum of the PEDOT:PSS electrode was measured with a UV-vis spectrophotometer (UV-1800, Shimadzu). Sheet resistances of the PEDOT:PSS films were measured by using a four point probe. The ultraviolet photoelectron spectroscopy (UPS) profiles were obtained by Sigma Probe from Thermo VG Scientific Thermo VG Scientific incorporation. The 90 ° peel tests were performed using an adhesion tester (DTS company, 50 lbf load cell) operated at a peeling rate of 0.1 mm s^{-1} with an adhesive tape (12 mm width). The time-of-flight secondary ion mass spectrometry (TOF-SIMS) depth profiling analysis (sputtered with 5 keV Ar⁺ and 500 \times 500 μ m²) was performed to investigate the interfacial properties between the PEDOT:PSS electrode and the TPU. Relative resistance (R/R₀) and tensile cycle test of PEDOT:PSS film were measured using a stretching tester (JIRBT-620, Junil Tech., South Korea). Atomic force microscopy (AFM, Parks Systems NX20) was used to analyze the surface morphology of PEDOT:PSS film. To measure the thickness of PEDOT:PSS film, we used a surface profiler (Tencor α -Step IQ). The PCE was determined under ambient conditions with a solar simulator (K201 LAB55, McScience). The photovoltaic performance was measured under air mass 1.5 solar illumination at 100 mW cm⁻² (1 sun). The intensity of the solar simulator was calibrated using a standard silicon reference cell (K801S-K302, McScience). The current density-voltage (J-V) characteristics were recorded using a Keithley 2400 SMU semiconductor characterization system. A shadow mask (0.04 cm²) was used to define the photoactive area during the measurements. And, we measured the change in properties of IS-OSCs according to elongational deformation using a manually adjustable tensile strain test holder. External quantum efficiency (EQE) spectra were measured by K3100

15 IQX (McScience Inc.) and MC 2000 optical chopper (Thorlabs) under ambient conditions.

Calculation of FoM value

The FoM is defined as the ratio of direct current conductivity (σ_{dc}) to optical conductivity (σ_{op}). It can be calculated as sheet resistance (Ω sq⁻¹), transmittance (%, at $\lambda = 550$ nm) and impedance of free space (Z₀, 377 Ω).

$$FoM = \frac{\sigma_{dc}}{\sigma_{op}} = \frac{Z_0}{2R_{sheet} \left(T^{-\frac{1}{2}} - 1\right)}$$

Finite Element Method Simulation

The relationship between the stretchability and the interfacial adhesion was investigated using a commercial finite element method tool (ABAQUS v 6.24). The TPU-PEDOT:PSS bilayer was modeled as a deformable 3D solid with 226,929 nodes and 210,160 elements of type CSD8R (8-node linear brick, reduced integration, hourglass control). The TPU was considered as a hyperelastic material based on the Arruda-Boyce model (E: 10 MPa, v: 0.45), while the PEDOT:PSS was considered to be elastic material (E: 500 MPa, v: 0.35). To simulate the stretching and cracking process, the boundary conditions of the model were defined as follows: The model was uniaxially tensile loaded with displacement control, and the interfacial adhesion was characterized with a fracture criterion of VCCT. And, planar crack driving force was calculated for a 10 µm long initial crack with the J-integral method.

Fig. S1. (a) Optical transmittances of as-casted and acid-treated PEDOT:PSS STEs compare with ITO; (b) images of as-casted and acid-treated PEDOT:PSS on ODTS treated glass.

	Substrate	sheet resistance $(\Omega \text{ sq}^{-1})$	conductivity (S cm ⁻¹)	work function (eV)
PEDOT:PSS as-casted	glass	110	605	5.0
	glass	92	961	5.0
PEDOT:PSS acid-treated	TPU (MID)	88	959	5.0
	TPU (ST)	90	958	5.0

Table S1. Sheet resistance, conductivity and work function of PEDOT:PSS depending on acid treatment and transfer method.

Fig. S2. AFM images of (a) as-casted PEDOT:PSS and (b) acid-treated PEDOT:PSS.

Fig. S3. Schematics depicting fabrication procedures of (a) ST- and (b) MID-based TPU-PEDOT:PSS bilayers.

ŧ

Glass

ŧ

TPU

ŧ

PEDOT:PSS

Glass

Fig. S4. Optical transmittance of PEDOT:PSS STEs on bare glass and on TPU films (ST and MID-assisted).

Fig. S5. UPS(Ultraviolet photoelectron spectroscopy) profiles of PEDOT:PSS depending on acid treatment and transfer method.

Fig. S6. The photographs of (a) ST- and (b) MID-assisted TPU–PEDOT:PSS bilayers (right) from glass substrates (left).

Fig. S7. Displacement vs. load profiles of ST- and MID-based TPU-PEDOT:PSS bilayers measured by DCB test.

Fig. S8. Schematic diagram for the 90° peel test.

Fig. S9. Peel strength of ST- and MID-based bilayers measured from 90° peel test.

Fig. S10. Chemical structures of the active materials used in this study.

Strain	Voc	J_{sc}	FF	PCE
(%)	(V)	$(\mathbf{mA}\ \mathbf{cm}^{-2})$	(%)	(%)
0	0.85	23.2	65.9	13.1
10	0.86	23.1	67.4	13.4
20	0.86	23.3	66.9	13.5
30	0.86	23.8	61.7	13.0
40	0.85	22.3	55.3	9.4
50	0.85	19.7	44.3	7.5

Table S3. Photovoltaic parameters of the PM6:Y6-BO:N2200-based IS-OSCs with MID-based TPU-PEDOT:PSS as a function of strain.

Table S4. Photovoltaic parameters of the PM6:Y6-BO:N2200-based IS-OSCs with ST-based TPU-PEDOT:PSS as a function of strain.

Strain	Voc	J_{sc}	FF	PCE
(%)	(V)	$(mA \ cm^{-2})$	(%)	(%)
0	0.85	23.0	67.8	13.3
10	0.87	22.9	64.6	12.7
20	0.88	22.5	59.3	11.7
30	0.87	21.8	45.3	8.6
40	0.87	19.9	36.7	6.4
50	0.86	14.7	31.6	4.0

Strain	V_{oc}	J_{sc}	FF	PCE
(%)	(V)	$(mA \ cm^{-2})$	(%)	(%)
0	0.81	20.44	63.54	10.56
10	0.82	20.50	63.00	10.65
20	0.82	20.33	63.53	10.61
30	0.83	19.62	48.48	7.86
40	0.80	7.92	35.18	2.22
50	0.78	4.05	35.52	1.12

Table S5. Photovoltaic parameters of the PM6:Y6-based IS-OSCs with MID-based TPU-PEDOT:PSS as a function of strain.

Table S6. Photovoltaic parameters of the PM6:Y6-based IS-OSCs with ST-based TPU-PEDOT:PSS as a function of strain.

Strain	V_{oc}	J_{sc}	FF	PCE
(%)	(V)	(mA cm ⁻²)	(%)	(%)
0	0.85	20.38	60.40	10.52
10	0.85	20.35	59.16	10.24
20	0.85	20.09	51.25	8.75
30	0.53	13.21	31.87	2.23
40	0.51	12.95	29.53	1.95
50	0.41	10.68	24.22	1.06

Strain	V_{oc}	J_{sc}	FF	PCE
(%)	(V)	(mA cm ⁻²)	(%)	(%)
0	0.86	23.43	63.08	12.69
10	0.86	23.69	63.96	13.03
20	0.86	23.99	61.70	12.74
30	0.85	20.57	57.45	10.02
40	0.84	22.59	49.21	9.31
50	0.82	19.52	43.41	6.98

Table S7. Photovoltaic parameters of the PM6-OEG5:BTP-eC9-based IS-OSCs with MID-based TPU-PEDOT:PSS as a function of strain.

Table S8. Photovoltaic parameters of the PM6-OEG5:BTP-eC9-based IS-OSCs with ST-based TPU-PEDOT:PSS as a function of strain.

Strain	Voc	J_{sc}	FF	PCE
(%)	(V)	(mA cm ⁻²)	(%)	(%)
0	0.85	23.48	62.10	12.38
10	0.84	23.25	62.10	12.11
20	0.85	22.52	58.37	11.11
30	0.82	14.56	37.81	4.52
40	0.83	10.57	25.46	2.24
50	0.82	9.16	19.87	1.49

Strain	Voc	J_{sc}	FF	PCE
(%)	(V)	(mA cm ⁻²)	(%)	(%)
0	0.89	17.77	67.74	10.77
10	0.89	18.00	65.54	10.52
20	0.90	16.51	70.30	10.44
30	0.88	15.41	61.14	8.26
40	0.88	15.91	58.08	8.09
50	0.84	15.63	50.84	6.70

Table S9. Photovoltaic parameters of the PBDB-T:PYBDT-Cl-based IS-OSCs with MID-based TPU-PEDOT:PSS as a function of strain.

Table S10. Photovoltaic parameters of the PBDB-T:PYBDT-Cl-based IS-OSCs with ST-based TPU-PEDOT:PSS as a function of strain.

Strain	Voc	J_{sc}	FF	PCE	
(%)	(V)	(mA cm ⁻²)	(%)	(%)	
0	0.90	18.39	69.93	11.53	
10	0.90	17.04	70.95	10.85	
20	0.88	15.26	58.28	7.86	
30	0.69	14.47	4.47 38.94	3.88	
40	0.45	11.78	34.05	1.79	
50	0.42	9.77	32.74	1.34	

Fig. S11. PCE of (a) PM6:Y6, (b) PM6-OEG5:BTP-eC9 and (c) PBDB-T:PYBDT-Cl based IS-OSCs under strains.

Fig. S12. PCE versus strain plots for IS-OSCs from the reported studies and this study.

Voor	Dovigo structuro	A ativa I avan	PCE	Strain at PCE _{80%}	Dof
rear	Device structure	Active Layer	[%]	[%]	Kel.
2012	UV/O3-treated PDMS/PEDOT:PSS/Active Layer/EGaIn	P3HT:PCBM	~1	-	1
2013	PDMS/PEDOT:PSS/	P3HT:PCBM	0.59	-	2
2013	Active Layer/EGaIn	P3DDT:PCBM	0.29	-	
2016	PU/PEDOT:PSS/PEI/Active Layer/PEDOT:PSS/PU	P3HpT:PCBM	1.25	-	3
2017	PUA-AgNW/ SWNT/PEDOT:PSS/Active Layer/PEIE/SWNT/ AgNW-PUA	PTB7-Th: PC71BM	2.90	-	4
2017	3M tape/PEI/Ag/PH1000/ Active Laver/EGaIn	PTB7-Th: PCBM	5.32	8.1	5
	Tion ve Eugen/Elouni	PTB7-Th:N2200	2.02	20.2	
	3M tape/	PTB7-Th:N2200	2.02	20.2	
2018	PEDOT:PSS/	PTB7-Th: ITIC	1.66	10.4	6
	PFN-NBR/EGaIn	PTB7-Th: P(NDI2HD-T)	3.00	15.7	
2019	Ag mesh/PEDOT:PSS/ Active Layer/ PEIE/Ag/Parylene	PTzNTz: PC71BM	9.70	7.7	7
2021	PDMS/PH1000/ Active Layer/EGaIn	PBDB-T: PCE10:N2200 (1.2:0.8:1)	6.33	11.2	8
	TPU/PH1000/	PM6:Y7	11.2	12.4	
2021	AI4083/Active Layer/	PM6:PCBM	5.7	5.1	9
	PNDIT-F3N-Br/EGaIn	PCE12:N2200	5.0	42.3	
2021	TPU/AgNW/PEDOT:PSS/ Active Layer/EGaIn	PTB7-Th: IEICO-4F	10.1	12.0	10
2022	TPU/PH1000/ AI4083/Active Layer/ PNDIT-F3N-Br/EGaIn	PM6:Y7:N2200 (1:0.8:0.2)	11.71	19.9	11
2022	TPU/PH1000/ AI4083/Active Layer/ PNDIT-F3N-Br/EGaIn	PhAm5:Y7	12.7	31.6	12
2022	MID-based TPU- PEDOT:PSS/ AI4083/Active Layer/ PNDIT-F3N-Br/EGaIn	PM6:Y6- BO:N2200	13.1	34.0	This Work

Table S11. Device structures, mechanical and photovoltaic performances of reported IS-OSCs. The $PCE_{80\%}$ values were estimated by interpolation of the data reported in the papers.

References

- 1. D. J. Lipomi, J. A. Lee, M. Vosgueritchian, B. C. K. Tee, J. A. Bolander and Z. A. Bao, *Chem. Mater.*, 2012, **24**, 373-382.
- S. Savagatrup, A. S. Makaram, D. J. Burke and D. J. Lipomi, *Adv. Funct. Mater.*, 2014, 24, 1169-1181.
- 3. E. J. Sawyer, A. V. Zaretski, A. D. Printz, N. V. de los Santos, A. Bautista-Gutierrez and D. J. Lipomi, *Ext. Mech.Lett.*, 2016, **8**, 78-87.
- 4. L. Li, J. J. Liang, H. E. Gao, Y. Li, X. F. Niu, X. D. Zhu, Y. Xiong and Q. B. Pei, *ACS Appl. Mater. Interfaces*, 2017, **9**, 40523-40532.
- 5. Y. Y. Yu, C. H. Chen, C. C. Chueh, C. Y. Chiang, J. H. Hsieh, C. P. Chen and W. C. Chen, *ACS Appl. Mater. Interfaces*, 2017, **9**, 27853-27862.
- 6. Y. T. Hsieh, J. Y. Chen, S. Fukuta, P. C. Lin, T. Higashihara, C. C. Chueh and W. C. Chen, *ACS Appl. Mater. Interfaces*, 2018, **10**, 21712-21720.
- Z. Jiang, K. Fukuda, W. C. Huang, S. Park, R. Nur, M. O. G. Nayeem, K. Yu, D. Inoue, M. Saito, H. Kimura, T. Yokota, S. Umezu, D. Hashizume, I. Osaka, K. Takimiya and T. Someya, *Adv. Funct. Mater.*, 2019, 29, 1808378.
- 8. Q. L. Zhu, J. W. Xue, L. Zhang, J. L. Wen, B. J. Lin, H. B. Naveed, Z. Z. Bi, J. M. Xin, H. Zhao, C. Zhao, K. Zhou, S. Z. Liu and W. Ma, *Small*, 2021, **17**, 2007011.
- 9. J. Noh, G. U. Kim, S. Han, S. J. Oh, Y. Jeon, D. Jeong, S. W. Kim, T. S. Kim, B. J. Kim and J. Y. Lee, *ACS Energy Lett.*, 2021, **6**, 2512-2518.
- 10. Z. Y. Wang, M. C. Xu, Z. L. Li, Y. R. Gao, L. Yang, D. Zhang and M. Shao, *Adv. Funct. Mater.*, 2021, **31**, 2103534.
- 11. J.-W. Lee, G. U. Kim, D. J. Kim, Y. Jeon, S. Li, T. S. Kim, J. Y. Lee and B. J. Kim, *Adv. Energy Mater.*, 2022, **12**, 2200887.
- 12. J.-W. Lee, S. Seo, S. W. Lee, G. U. Kim, S. Han, T. N. Phan, S. Lee, S. Li, T. S. Kim, J. Y. Lee and B. J. Kim, *Adv. Mater.*, 2022, 2207544.