Supporting Information

Enabling interfacial stability of $LiCoO_2$ batteries at ultrahigh cutoff voltage ≥ 4.65 V with synergetic electrolyte strategy

Ang Fu,^{a,c,1} Chuanjing Xu,^{a,1} Jiande Lin,^a Yu Su,^a Haitang Zhang,^{a,c} De-Yin Wu,^a Xiaozheng Zhang,^{a,c} Meng Xia,^{a,c} Zhongru Zhang,^a Jianming Zheng, *,^{a,c} Yong Yang *,^{a,b,c}

^{*a*} State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.

^b School of Energy, Xiamen University, Xiamen, Fujian 361005, China

^c Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, Fujian 361005, China

Figure S1. The configuration of DMMA and DMMA-re, and the change of bond length after DMMA accepts an electron. The calculation results show that the C=C double bond in DMMA is likely to be broken when DMMA accepts an electron.

Figure S2. (a) Cyclic voltammograms of Li||Gr cells between 1.5-4.2 V in the DMMA and DMSAcontaining electrolytes for the first cycle at a scanning sweep of 0.1 mV s⁻¹ starting from negative scan. (b) Cyclic voltammograms of Li||Gr cell in the baseline electrolyte for 3 cycles at a scanning sweep of 0.1 mV s⁻¹ starting from negative scan.

Figure S3. (a) Energy density of LCO cathodes in baseline and 1% DMMA-containing electrolytes at 1C at 30 °C in the voltage range of 3-4.65 V. (b) The corresponding mid-point charge and discharge voltages of LCO in baseline and 1% DMMA-containing electrolytes.

Figure S4. (a) Li cycling CEs tested in Li||Cu cells with baseline and DMMA-containing electrolytes at the current density of 1 mA cm⁻² with the deposition capacity of 1 mAh cm⁻². (b) Cycling performance of symmetric Li||Li cells using baseline and DMMA-containing electrolytes at the current density of 1mA cm⁻² with the deposition capacity of 1 mAh cm⁻².

Figure S5. Charge/discharge profiles of LCO cycled in (a) baseline and (b) 1% DMMA-containing electrolytes at 2C for charge and 5C for discharge in the voltage range of 3.0-4.65 V.

Figure S6. (a, b) Capacity as a function of cycle number of high-loading (~ 17.3 mg cm⁻²) LCO cathode with baseline and optimized electrolytes at 3.0-4.65 V at 0.5C charge / 1C discharge rate.

Figure S7. EIS spectra of LCO cycled in (a) baseline and (b) 1% DMMA-containing electrolytes at 50th, 100th, 150th, 200th, 250th, and 300th cycles at 1C and 30 °C in the voltage range of 3.0-4.65 V.

Figure S8. (a) Illustration of procedure used for DCR measurement. $R = \Delta U/\Delta I$, where ΔU is the voltage change in different charge current densities, and the ΔI is the difference between 0.2C and 1C (1C = 200 mA g⁻¹). (b) DCR values of LCO operated in baseline and 1% DMMA-containing electrolytes at different states of charge (SOCs) after 200 cycles.

Figure S9. (a) Rate performance of LCO with baseline and 1% DMMA-containing electrolytes at 0.2, 0.5, 1, 2, 3, 5, 7, and 10C in the voltage range of 3.0-4.65 V. (b, c) The corresponding charge/discharge curves in (b) baseline and (c) 1% DMMA-containing electrolytes.

Figure S10. (a, b) Amperometry (floating charge) test of LCO batteries at 4.65, 4.7, 4.8 and 4.9 V at 45 °C after 100 cycles in the voltage range of 3.0-4.65 V.

Figure S11. O 1s XPS spectra of LCO surface after cycling for 200 cycles in (a) baseline and (b) 1% DMMA-containing electrolytes. (c, d) Co 2p XPS spectra of LCO cathodes after cycling for 200 cycles in (c) baseline and (d) 1% DMMA-containing electrolytes.

Figure S12. The comparison of element percentage of CEI film at LCO surface after cycling (at 1C and cutoff 4.65 V for 200 cycles) in (a) baseline and (b) 1% DMMA-containing electrolytes obtained from XPS results.

Figure S13. The comparison of element percentage of CEI film at LCO surface after cycling (at 1C and cutoff 4.65 V for 200 cycles) in (a) baseline and (b) 1% DMMA-containing electrolytes obtained from XPS results.

Figure S14. FTIR spectra of separators disassembled from LCO batteries cycled in (a) baseline and (b) optimized electrolytes.

Figure S15. XRD patterns of fresh LCO and the LCO cycled in baseline and 1% DMMAcontaining electrolytes at 1C and cutoff 4.65 V (discharge state at 200th cycle).

Figure S16. Raman spectra of fresh LCO and the LCO cycled in (a) baseline and (b) 1% DMMA-containing electrolytes at 1C and 30 °C in the voltage range of 3.0-4.65 V.

Figure S17. SEM images of the surface and cross-sectional morphologies of (a-c) fresh LCO cathode, and the LCO cathodes cycled at 1C and cutoff 4.65 V for 200 cycles in (d-f) baseline and (g-i) optimized electrolytes at different regions.

Figure S18. NMR spectra of (a) ¹⁹F and (b) ³¹P of baseline and 1% DMMA-containing electrolytes added with 500 ppm H_2O and stored at 60 °C for 2 weeks.

Figure S19. The possible reaction mechanisms of DMMA additive.

Figure S20. (a) Energy density as a function of cycle number of LCO with baseline, optimized (adding 1% DMMA) and upgraded (adding 1% DMMA, 5% FEC, and 1% HTCN) electrolytes at 3.0-4.7 V at 1C. (b) The corresponding charge/discharge curves and (c) dQ/dV profiles at selected cycles in the different electrolytes.

Figure S21. Cycling performance of Li||Gr half batteries with baseline, optimized (adding 1% DMMA) and upgraded (adding 1% DMMA, 5% FEC, and 1% HTCN) electrolytes at (a) 0.2C and (b) 0.5C in the voltage range of 0.01-1.5 V.

				Current	
Electrolyte additives and recipes	Capacity retention (%)	Voltage range (V)	Areal	rate or	
			loading	density	Ref.
			$(mg \text{ cm}^{-2})$	(C or	
			((0 or) mA g^{-1}	
5-Acetvlthiophene-2-					
carbonitrile	91 (200 th)	3-4.5	2.3–2.6	180	1
Di(methylsulfonyl)		2.4.5	15 4	10	2
ethane	$66.3(100^{m})$	5-4.5	13.4	IC	
Tris(2-cyanoethyl)	79.2(200th)	2.75-4.5	2	180	3
borate	78.2 (200**)				
Dihydro-1,3,2-					
dioxathiolo[1,3,2]dio	77.7 (250 th)	3.0-4.5	1.86	0.7C	4
xathiole 2,2,5,5-					
tetraoxide					
Aluminum	78 1 (200th)	3-4.6	5	200	5
isopropoxide	78.1 (200)				
Fluoroethylene					
carbonate (FEC) and					
1,3,6-	75 (300 th)	3-4.6	6	200	6
hexanetricarbonitrile					
(HTCN)					
Triisopropanolamine	82.2 (200 th)	3-4.6	2-3	200	7
cyclic borate	85.2 (100 th)	3-4.65	2-3	200	
2.4.6-Tris(4- fluorophenyl)boroxin	84.6 (200 th)	3-4.6	2-3	200	
	65.8 (200 th)	3-4.65	2-3	200	8
	74 (85 th)	3-4.7	2-3	200	
4-Methylmorpholine-	83.5 (200 th)	3-4.6	2-3	200	9

 Table S1. Comparison of electrochemical performance of the electrolyte additives and recipes

 reported for high-voltage LCO batteries.

2,6-dione	72.3 (200 th)	3-4.65	2-3	200	
	55.4 (200 th)	3-4.7	2-3	200	
KSeCN	55.2 (750 th)	3-4.6	3	200	10
Potassium (4-					
methylsulfonylphenyl	70.3 (300 th)	3-4.65	3	200	11
) trifluoroborate					
Vinylene carbonate and KBF ₄	91.9 (300 th)	3-4.6	~5	274	12
1M LiFSI, in N,N- dimethyltrifluoromet- hanesulfonamide	89 (200 th) 85 (100 th)	3-4.55 3-4.6	~13 ~13	150 150	13
T M L1PF ₆ in FEC/FEMC/TTE +2 wt% TMSB	74.8 (300 th)	3-4.6	~18	137	14
0.3 M LiDFOB + 0.2 M LiBF ₄ in DEC/FEC/FB	85.6 (120 th)	3-4.6	20.4	49	15
2,3-Dimethylmaleic anhydride (DMMA)	70.7 (500 th) 69.4 (400 th) 69.6 (300 th)	3-4.65 3-4.65 3-4.7	~3 ~8 ~3	200 200 200	This work
1M LiPF ₆ , in EC/EMC, + 1% DMMA, 5% FEC, and 1% HTCN	75.9 (300 th)	3-4.7	~3	200	This work

				Current	
Modified LCO	Capacity retention (%)	Voltage	Areal	rate or	
		range	loading	density	Ref.
		(V)	$(mg cm^{-2})$	(C or	
				mA g ⁻¹)	
Al, Ti-bulk doped and	78 (300 th)	3-4.6	~1.5	70	16
Mg-surface doped LCO					
Ti, Mg, Al co-doped LCO	86 (100 th)	3-4.6		137	17
Mg-pillared LCO	84 (100 th)	3-4.6	~3	270	18
MgF ₂ -doped LCO	92 (100 th)	3-4.6	~3	270	19
Al, F co-doped LCO	86.9 (200 th)	3-4.6	~3	100	20
Al, F, Mg gradient co- doped LCO	80.9 (500 th)	3-4.6	~3	137	21
Ni, P co-doped LCO	92.6 (100 th)	3-4.6	4.2-4.6	137	22
Li ₂ SO ₄ /Li _x Co ₂ O ₄ coated	00(100th)	2816	C	200	22
and trace S-doped LCO	88 (100 ^m)	2.8-4.0	Z	280	23
Li, Al, F-modified LCO	91 (200 th)	3-4.6	~12.6	27.4	24
AlPO ₄ and Li ₃ PO ₄ co-	88.6 (200 th)	3-4.6	3-4	137	25
coated LCO	79.7 (400 th)				
Li _{1.5} Al _{0.5} Ti _{1.5} (PO ₄) ₃ - coated LCO	88.3 (100 th)	3-4.6	3	137	26
Surface Se-substituted LCO	86.7 (120 th)	3-4.62	16-17	70	27
Al-doped ZnO and					
Li _{1.5} Al _{0.5} Ge _{1.5} P ₃ O ₁₂ co-	77.1 (300 th)	3-4.6	2	185	28
coated LCO					
AlZnO-coated LCO	65.7 (500 th)	3-4.6		185	29

Table S2. Comparison of electrochemical performance of this research with the modified LCO atthe cutoff voltage over 4.6 V.

TiO ₂ and LiF co-coated LCO	85.4 (100 th)	3-4.6		70	30
Al ₂ O ₃ -coated LCO (by ALD method)	88 (200 th)	3-4.6	2	95	31
LiF, KF, and LiCo _{1-x} Al _x O ₂ modified LCO	78.7 (100 th) 60.4 (200 th)	3-4.6 3-4.7		0.5C 0.5C	32
F-surface doped and LiF/Li ₂ CoTi ₃ O ₈ coated LCO	82.5 (100 th) 81.2 (200 th)	3-4.6 3-4.6	8-9 8-9	137 27.4	33
Mg-doped and Co _x B _y - coated LCO	94.6 (100 th)	3-4.6	2.5	270	34
Mg-doped and Se-coated LCO	72.9 (1000 th) 68.6 (400 th) 80.7 (100 th)	3-4.6 3-4.65 3-4.7	~3	200 200 200	35
Li, Al, F-modified LCO combining with optimized electrolyte (1M LiPF ₆ , in FEC/DEEC/DMC)	77.8 (500 th)	3-4.6		110	36
RbAlF ₄ -modified LCO with optimized electrolyte (1M LiPF ₆ , in FEC/DFEC/DMC)	91.5 (100 th) 80.2 (500 th) 82 (100th) 76 (100th)	3-4.6 3-4.6 3-4.65 3-4.7	~6	110	37
coated LCO combining with optimized electrolyte (1M LiPF ₆ , in EC/EMC, + 5% FEC, +1% SUN)	87 (300 th) 83 (100th)	3-4.6 3-4.7	~3 ~3	200 200	38

REFERENCES

- D. Ruan, M. Chen, X. Wen, S. Li, X. Zhou, Y. Che, J. Chen, W. Xiang, S. Li, H. Wang, X. Liu and W. Li, *Nano Energy*, 2021, 90, 106535.
- X. Zheng, T. Huang, G. Fang, Y. Pan, Q. Li and M. Wu, ACS Appl. Mater. Interfaces, 2019, 11, 36244-36251.
- Z. Zhang, F. Liu, Z. Huang, J. Gu, Y. Song, J. Zheng, M. Yi, Q. Mao, M. Bai, X. Fan, B. Hong,
 Z. Zhang and Y. Lai, ACS Appl. Energy Mater., 2021, 4, 12954-12964.
- X. Q. Liao, F. Li, C. M. Zhang, Z. L. Yin, G. C. Liu and J. G. Yu, *Nanomaterials*, 2021, 11, 609.
- J. Yang, X. Liu, Y. Wang, X. Zhou, L. Weng, Y. Liu, Y. Ren, C. Zhao, M. Dahbi, J. Alami,
 D. A. Ei-Hady, G. L. Xu, K. Amine and M. Shao, *Adv. Energy Mater.*, 2021, 11, 2101956.
- X. Yang, M. Lin, G. Zheng, J. Wu, X. Wang, F. Ren, W. Zhang, Y. Liao, W. Zhao, Z. Zhang, N. Xu, W. Yang and Y. Yang, *Adv. Funct. Mater.*, 2020, **30**, 2004664.
- Y. Zou, Y. Cheng, J. Lin, Y. Xiao, F. Ren, K. Zhou, M.-S. Wang, D.-Y. Wu, Y. Yang and J. Zheng, *J. Power Sources*, 2022, **532**, 231372.
- Y. Zou, A. Fu, J. Zhang, T. Jiao, Y. Yang and J. Zheng, ACS Sustain. Chem. Eng., 2021, 9, 15042-15052.
- Y. Zou, J. Zhang, J. Lin, D.-Y. Wu, Y. Yang and J. Zheng, J. Power Sources, 2022, 524, 231049.
- A. Fu, J. Lin, Z. Zhang, C. Xu, Y. Zou, C. Liu, P. Yan, D.-Y. Wu, Y. Yang and J. Zheng, ACS Energy Lett., 2022, 7, 1364-1373.

- Y. Yan, S. Weng, A. Fu, H. Zhang, J. Chen, Q. Zheng, B. Zhang, S. Zhou, H. Yan, C.-W. Wang, Y. Tang, H. Luo, B.-W. Mao, J. Zheng, X. Wang, Y. Qiao, Y. Yang and S.-G. Sun, *ACS Energy Lett.*, 2022, 7, 2677-2684.
- K. Zhang, J. Chen, W. Feng, C. Wang, Y.-N. Zhou and Y. Xia, *J. Power Sources*, 2023, 553, 232311.
- W. Xue, R. Gao, Z. Shi, X. Xiao, W. Zhang, Y. Zhang, Y. G. Zhu, I. Waluyo, Y. Li, M. R. Hill, Z. Zhu, S. Li, O. Kuznetsov, Y. Zhang, W.-K. Lee, A. Hunt, A. Harutyunyan, Y. Shao-Horn, J. A. Johnson and J. Li, *Energy Environ. Sci.*, 2021, 14, 6030-6040.
- J. Zhang, P. F. Wang, P. Bai, H. Wan, S. Liu, S. Hou, X. Pu, J. Xia, W. Zhang, Z. Wang, B. Nan, X. Zhang, J. Xu and C. Wang, *Adv. Mater.*, 2021, **34**, 2108353.
- Z. Jiang, Z. Zeng, H. Zhang, L. Yang, W. Hu, X. Liang, J. Feng, C. Yu, S. Cheng and J. Xie, *iScience*, 2022, **25**, 103490.
- L. Wang, J. Ma, C. Wang, X. Yu, R. Liu, F. Jiang, X. Sun, A. Du, X. Zhou and G. Cui, *Adv. Sci.*, 2019, 6, 1900355.
- J.-N. Zhang, Q. Li, C. Ouyang, X. Yu, M. Ge, X. Huang, E. Hu, C. Ma, S. Li, R. Xiao, W. Yang, Y. Chu, Y. Liu, H. Yu, X.-Q. Yang, X. Huang, L. Chen and H. Li, *Nat. Energy*, 2019, 4, 594-603.
- Y. Huang, Y. Zhu, H. Fu, M. Ou, C. Hu, S. Yu, Z. Hu, C. T. Chen, G. Jiang, H. Gu, H. Lin,
 W. Luo and Y. Huang, *Angew. Chem. Int. Ed.*, 2020, **133**, 4732-4738.
- W. Kong, J. Zhang, D. Wong, W. Yang, J. Yang, C. Schulze and X. Liu, *Angew Chem. Int. Ed.*, 2021, **133**, 27308–27318.
- W. Huang, Q. Zhao, M. Zhang, S. Xu, H. Xue, C. Zhu, J. Fang, W. Zhao, G. Ren, R. Qin, Q. Zhao, H. Chen and F. Pan, *Adv. Energy Mater.*, 2022, **12**, 2200813.

- Y. He, X. Ding, T. Cheng, H. Cheng, M. Liu, Z. Feng, Y. Huang, M. Ge, Y. Lyu and B. Guo, *J. Energy Chem.*, 2023, 77, 553-560.
- N. Qin, Q. Gan, Z. Zhuang, Y. Wang, Y. Li, Z. Li, H. Iftikhar, C. Zeng, G. Liu, Y. Bai, K. Zhang and Z. Lu, *Adv. Energy Mater.*, 2022, **12**, 2201549.
- X. Tan, T. Zhao, L. Song, D. Mao, Y. Zhang, Z. Fan, H. Wang and W. Chu, *Adv. Energy Mater.*, 2022, **12**, 2200008.
- J. Qian, L. Liu, J. Yang, S. Li, X. Wang, H. L. Zhuang and Y. Lu, *Nat. Commun.*, 2018, 9, 4918.
- X. Wang, Q. Wu, S. Li, Z. Tong, D. Wang, H. L. Zhuang, X. Wang and Y. Lu, *Energy Stor. Mater.*, 2021, **37**, 67-76.
- Y. Wang, Q. Zhang, Z. C. Xue, L. Yang, J. Wang, F. Meng, Q. Li, H. Pan, J. N. Zhang, Z. Jiang, W. Yang, X. Yu, L. Gu and H. Li, *Adv. Energy Mater.*, 2020, 10, 2001413.
- Z. Zhu, H. Wang, Y. Li, R. Gao, X. Xiao, Q. Yu, C. Wang, I. Waluyo, J. Ding, A. Hunt and J. Li, *Adv. Mater.*, 2020, **32**, 2005182.
- T. Cheng, Q. Cheng, Y. He, M. Ge, Z. Feng, P. Li, Y. Huang, J. Zheng, Y. Lyu and B. Guo, ACS Appl. Mater. Interfaces, 2021, 13, 42917-42926.
- T. Cheng, Z. Ma, R. Qian, Y. Wang, Q. Cheng, Y. Lyu, A. Nie and B. Guo, *Adv. Funct. Mater.*, 2021, **31**, 2001974.
- Z. Wang, X. Dai, H. Chen, F. Wu, Y. Mai, S. Li, Y. Gu, J. Li and A. Zhou, ACS Sustain. Chem. Eng., 2022, 10, 8151-8161.
- R. Wu, T. Cao, H. Liu, X. Cheng, X. Liu and Y. Zhang, ACS Appl. Mater. Interfaces, 2022, 14, 25524-25533.

- Y. Liao, Z. Wang, X. Dai, H. Chen, F. Wu, J. Li, Y. Mai and S. Li, *J. Phys. Chem. C*, 2022, 126, 16627-16635.
- 33. S. Mao, Z. Shen, W. Zhang, Q. Wu, Z. Wang and Y. Lu, Adv. Sci., 2022, 9, 2104841.
- 34. J. Chen, H. Chen, S. Zhang, A. Dai, T. Li, Y. Mei, L. Ni, X. Gao, W. Deng, L. Yu, G. Zou, H. Hou, M. Dahbi, W. Xu, J. Wen, J. Alami, T. Liu, K. Amine and X. Ji, *Adv. Mater.*, 2022, 34, 2204845.
- A. Fu, Z. Zhang, J. Lin, Y. Zou, C. Qin, C. Xu, P. Yan, K. Zhou, J. Hao, X. Yang, Y. Cheng, D.-Y. Wu, Y. Yang, M.-S. Wang and J. Zheng, *Energy Stor. Mater.*, 2022, 46, 406-416.
- 36. T. Fan, W. Kai, V. K. Harika, C. Liu, A. Nimkar, N. Leifer, S. Maiti, J. Grinblat, M. N. Tsubery, X. Liu, M. Wang, L. Xu, Y. Lu, Y. Min, N. Shpigel and D. Aurbach, *Adv. Funct. Mater.*, 2022, **32**, 2204972.
- T. Fan, Y. Wang, V. K. Harika, A. Nimkar, K. Wang, X. Liu, M. Wang, L. Xu, Y. Elias, H. Scalar, M. S. Chae, Y. Min, Y. Lu, N. Shpigel and D. Aurbach, *Adv. Sci.*, 2022, 9, 2202627.
- X. Yang, C. Wang, P. Yan, T. Jiao, J. Hao, Y. Jiang, F. Ren, W. Zhang, J. Zheng, Y. Cheng, X. Wang, W. Yang, J. Zhu, S. Pan, M. Lin, L. Zeng, Z. Gong, J. Li and Y. Yang, *Adv. Energy Mater.*, 2022, 12, 2200197.