Supplementary Information

Development of Rigidity-Controlled Terpolymer Donors for High-Performance and Mechanically Robust Organic Solar Cells

Jinseck Kim, †,a Geon-U Kim, †,a Dong Jun Kim, †,b Seungjin Lee,a Dahyun Jeong,a Soodeok Seo,a Seo-Jin Ko*c, Sung Cheol Yoon*c, Taek-Soo Kim*b, and Bumjoon J. Kim*a

^aDepartment of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea

*Electronic mail: bumjoonkim@kaist.ac.kr

^bDepartment of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea

*Electronic mail: tskim1@kaist.ac.kr

^cDivision of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea

*Electronic mail: yoonsch@krict.re.kr; sjko927@krict.re.kr

Table of Contents

Experimental Section

Materials

Synthesis

Solar Cell Fabrications

Characterizations

Supplementary Figures and Tables.

- **Fig. S1.** a) Synthetic scheme, b) ¹H-NMR and c) ¹³C-NMR spectra of BID-Br.
- **Fig. S2.** Polymerization scheme and b) overlapped 1 H-NMR spectra of brominated monomers and P_{DS} .
- **Fig. S3.** GPC curves of P_{DS} .
- **Fig. S4.** a) Photo images of P_D solutions in chloroform (5 mg mL⁻¹). Solutions were heated at 60 °C for 12 h and, then, cooled to room temperature. b) OM images of P_D neat films from the solutions.
- **Fig. S5.** Simulated molecular conformation of FBDT-DTBDD-FBDT-DTBDD.
- **Fig. S6.** Temperature-dependent UV-Vis absorption spectra of P_{DS} .
- **Fig. S7.** a) Cyclic voltammetry curves of P_{DS} ; b) energy levels of P_{DS} .
- Fig. S8. GIXS a) 2D images and b) 1D linecut profiles of neat P_D films.
- **Fig. S9.** a) Molecular structure of Y6-BO; b) UV-Vis absorption spectrum of Y6-BO in a film; c) cyclic voltammetry curve and d) energy levels of Y6-BO; GIXS linecut profiles of neat Y6-BO film: e) in-plane direction and f) out-of-plane direction.
- **Fig. S10.** a) Molecular structure of PM6-P10; b) UV-Vis absorption spectrum of PM6-P10 in film; c) cyclic voltammetry curve; d) energy levels and e) temperature-dependent UV-Vis absorption spectrum (in *o*-dichlorobenzene) of PM6-P10. Photovoltaic characteristics of PM6-P10:Y6-BO OSC; f) *J-V* curve and g) EQE spectrum.
- **Fig. S11.** Light intensity—dependent J_{sc} of P_D :Y6-BO OSCs.
- **Fig. S12.** GIXS a) 2D image and b) 1D linecut of P_D :Y6-BO blend films.
- **Fig. S13.** Photo images of contact angle measurements with (a d) water and (e h) glycerol on P_D and Y6-BO neat films.
- **Fig. S14.** AFM images of P_D : Y6-BO blend films.
- **Table S1.** Solubilities of P_{DS} in chloroform.
- **Table S2.** GIXS information of neat P_D films.
- **Table S3.** Material characteristics of PM6-P10.
- **Table S4.** Photovoltaic performance of PM6-P10:Y6-BO OSC.
- **Table S5.** SCLC mobilities of the P_D : Y6-BO blend films.
- **Table S6.** GIXS information of P_D : Y6-BO blend films.
- **Table S7.** Surface tensions (γ) of solvents (water and glycerol) and their dispersive (γ^d)

- and polar (γ^p) components in previous work.⁶ All units are [mN m⁻¹].
- **Table S8.** Contact angles and surface tension of P_{DS} and Y6-BO, and the interfacial tension between P_{DS} and Y6-BO.
- **Table S9**. Mechanical properties of P_D neat films and P_D :Y6-BO blend films.

Experimental Section

Materials

4,8-Bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-2,6diyl)bis(trimethylstannane) (FBDT-Sn), 2,6-dibromo-4,8-bis(5-(2-ethylhexyl)-4-fluoro thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene (FBDT-Br) and 1,3-bis(5-bromo thiophen-2-yl)-5,7-bis(2-ethylhexyl)benzo[1,2-c:4,5-c']dithiophene-4,8-dione (DTBDD-Br) were purchased from SunaTech Inc. and used without purification. 4,5-Bis(5-hexylthiophen-2-yl)benzene-1,2diamine was synthesized by following previous literature.¹ Tetrakis(triphenylphosphine) palladium(0) (Pd(PPh₃)₄), anhydrous toluene, and N,N-dimethylformamide (DMF) were purchased from Sigma-Aldrich Inc.. 2,2'-((2Z,2'Z)-((12,13-Bis(2-butyloctyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-*e*]thieno[2",3":4',5'] thieno[2',3':4,5] pyrrolo[3,2g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10-diyl)bis (methanyly lidene))bis(5,6-difluoro-3oxo-2,3-dihydro-1*H*-indene-2,1-diylidene)) dimalononitrile (Y6-BO) was purchased from Derthon Inc.. 2,9-Bis(3-((3-(dimethylamino)propyl)amino)propyl) anthra[2,1,9-def:6,5,10d'e'f']diisoquinoline-1,3,8,10 (2H,9H)-tetraone (PDINN) was synthesized via following previous report.²

Synthesis

$1,4-Dibromo-7,8-bis(5-hexylthiophen-2-yl)-11H-benzo[4,5]imidazo[2,1-a]isoindol-11-one \\ (BID-Br)$

In a 100 mL round-bottom flask, 4,5-bis(5-hexylthiophen-2-yl)benzene-1,2-diamine (0.600 g, 1.36 mmol) and 3,6-dibromophthalic anhydride (0.416 g, 1.36 mmol) were added, and the flask was purged with nitrogen. Then, glacial acetic acid (8 mL) was added and flask was stirred at 130 °C for 5 h. After cooling to 25 °C, the mixture was filtered and washed with water and methanol. After mixture was dried for 24 h, acetic anhydride (10 mL) was added,

and refluxed for 5 h under nitrogen atmosphere. After cooling to 25 °C, the mixture was evaporated under reduced pressure, and crude product was purified by column chromatography yielding orange colored solid (yield: 42%). ¹H NMR (400 MHz, CDCl₃) δ = 7.89 (d, J = 2.3 Hz, 2H), 7.59 (d, J = 8.6 Hz, 1H), 7.48 (d, J = 8.6 Hz, 1H), 6.76 (d, J = 3.5 Hz, 1H), 6.72 (d, J = 3.5 Hz, 1H), 6.64 (m, 2H), 2.85 – 2.71 (m, 4H), 1.71 – 1.60 (m, 4H), 1.44 – 1.23 (m, 12H), 0.90 (t, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 157.3, 154.0, 148.4, 147.6, 147.1, 139.6, 139.5, 139.4, 137.3, 134.0, 133.9, 133.7, 132.3, 128.8. 127.4, 127.1, 124.0, 124.0, 123.9, 120.1, 116.2, 114.5, 31.6, 31.6, 30.1, 28.7, 22.6, 14.1. HR-MS: calculated for C₃₄H₃₄Br₂N₂OS₂ 708.0479, found 708.0499. Elemental analysis (%) calculated for C 57.47, H 4.82, N 3.94, S 9.02; found: C 57.38, H 4.85, N 4.01, S 8.89.

Polymerization of polymer donors (P_{DS})

P_Ds were polymerized *via* a modified procedure of previous liturature.³ In a 20 mL reaction vial with FBDT-Sn (100 μmol), Pd(PPh₃)₄ (3 μmol) and DTBDD-Br (100 μmol) for PM6 or a mixture of DTBDD-Br:BID-Br with various ratios (90 μmol:10 μmol for PM6-B10, 80 μmol:20 μmol for PM6-B20, 70 μmol:30 μmol for PM6-B30) were added and degassed with N₂. Then, toluene (12.5 mL) and DMF (2.5 mL) were added, and the vial was heated to 105 °C for 2 h. After cooling to 25 °C, the crude product was precipitated in methanol (150 mL), and filtered into cellulose thimble. After that, sequential Soxhlet extraction was performed with methanol, acetone, hexane, and dichloromethane to remove the catalyst and oligomers. Then, undissolved polymer was taken out from the thimble, dissolved in chloroform (150 mL) with vigorous stirring at 65 °C for 1 h and filtered. After that, condensed under reduced pressure, re-precipitated in methanol (150 mL) and dried under vacuum for 24 h before use.

Solar Cell Fabrications

For the study, the normal-type organic solar cells (OSCs) were prepared with indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) /active layer/PDINN/Ag. First, ITO-coated glass substrates were treated by ultrasonication with deionized water, acetone, and isopropyl alcohol. Then, the ITO substrates were dried for 3 h in an oven (70 °C) at an ambient pressure, and then plasma treated for 10 min. Spin-coating of the PEDOT:PSS solution (Clevios, AI4083) was performed at 3500 rpm for 30 s onto the ITO substrates. Then, the film/substrate was annealed in the air for 10 min at 150 °C before transferring into an N₂-filled glovebox. For the active layer solutions, P_Ds and Y6-BO were dissolved together in chloroform at 60 °C with an optimized condition (P_D: Y6-BO weight ratio = 1:1.2, total concentration = 12 mg mL^{-1} , and 1-chloronaphtalene 0.5 vol%). The solution was spin-coated onto the PEDOT:PSS/ITO substrate to form an active layer with the thickness of 100 – 110 nm. Then, the samples were annealed at 100 °C for 5 min and dried with high vacuum (< 10⁻⁶ torr) for 30 min. Next, PDINN in methanol (1 mg ml⁻¹) was spin-coated with the condition of 3000 rpm for 30 s. Finally, Ag (120 nm) was deposited under high vacuum ($\sim 10^{-6}$ Torr) in an evaporation chamber. Optical microscopy (OM) was used to measure the exact photoactive area of the mask (0.04 cm²). Keithley 2400 SMU instrument was used to measure the photovoltaic efficiency of the devices under an Air Mass 1.5 G solar simulator (100 mW cm⁻², solar simulator: K201 LAB55, McScience Inc.), satisfying the Class AAA, ASTM Standards. K801SK302 (McScience Inc.) was used as a standard silicon reference cell to calibrate the exact solar intensity. K3100 IQX instrument (McScience Inc.) was used to analyze the external quantum efficiency (EQE) spectra, equipped with a monochromator (Newport) and an optical chopper (MC 2000 Thorlabs).

Characterizations

¹H and ¹³C nuclear magnetic resonance (NMR) spectra of BID-Br were recorded at room temperature on a 400 MHz NMR (Bruker) instrument using chloroform-d as deuterium solvent. ¹H NMR spectra of P_{DS}, FBDT-Br, DTBDD-Br, and BID-Br were obtained at 100 °C on a 400 MHz AV HD NMR (Bruker) instrument using 1,2-dichlorobenze-d4 as deuterium solvent. The solvent peaks were suppressed to clearly observe the aliphatic region using lc1pngpps pulse sequence. The number average molecular weight (M_n) , polydispersity index (D) of the $P_{\rm D}$ s were estimated by gel permeation chromatography (GPC) with 1,2,4trichlorobenzene as eluent at 100 °C. Temperature-dependent UV-Vis absorption measurement was conducted using each P_D solution o-dichlorobenzene as solvent. Grazing-incidence X-ray scattering (GIXS) measurements were conducted at Pohang Accelerator Laboratory, Korea in beamline 9A. The coherence lengths (L_c s) of the neat and blend films were calculated by using the Scherrer equation. Resonant soft x-ray scattering (RSoXS) measurements were performed at beamline 11.0.1.2 in the Advanced Light Source (USA). PD:Y6-BO blend films for the RSoXS measurement were prepared on a 100 nm-thick, 1.0 mm × 1.0 mm Si₃N₄ membrane supported by a 200-μm thick, 5 mm × 5 mm silicon frame (Norcada Inc.). The domain spacing is calculated from the equation of $2\pi q_{\text{peak}}^{-1}$ from the RSoXS profile. The relative domain purity was estimated as the relative ratio of square-root of the integrated scattering intensity in the Iq^2 vs. q plot. The integration range in this study was q = 0.0003 to 0.0100 Å^{-1} .

Solubility test of P_{DS}

The solubilities of the $P_{\rm DS}$ were evaluated in the chloroform at 60 °C. The concentration of solutions was 30 mg mL⁻¹. After heating the solution at 60 °C for 12 h, the solutions were filtered by a polytetrafluoroethylene (PVDF) membrane with a pore size of 5 μ m

diameter. After filtration, the remaining solvent was completely evaporated and the weight of solid was measured to estimate solubilities of the $P_{\rm D}$ s. A filter with a smaller pore size of 0.45 μ m diameter was also tested, but all the $P_{\rm D}$ solutions were clogged.

Space-charge-limited current (SCLC) mobility measurements

SCLC method was introduced for measuring hole mobilities ($\mu_h s$) of neat P_D films, and μ_h and electron mobility (μ_e) of $P_D s$:Y6-BO blend films in a device structures of ITO/PEDOT:PSS/ $P_D s$ or $P_D s$:Y6-BO/Au (hole-only) and ITO/ZnO/ $P_D s$:Y6-BO/PFN-Br/Al (electron-only). The charge mobilities can be calculated from Mott-Gurney law.

$$J = \frac{9\varepsilon_0 \varepsilon_r \mu_0 V^2}{8L^3}$$

where J is the current density, ε_0 is the permittivity of free space (8.85 × 10⁻¹⁴ F cm⁻¹), ε_r is the relative dielectric constant of the active layer, μ_0 is the hole or electron mobility, V is the potential across the device ($V = V_{\text{applied}} - V_{\text{bi}} - V_{\text{r}}$, where V_{bi} is the built-in potential and V_r is the voltage drop caused by the resistance), and L is the thickness of the neat or blend films. The measured film thicknesses of the films were in the range of 85 – 110 nm and voltage was applied for the current-voltage measurements in the range of 0 to 6 V. The charge mobilities can be calculated from the slope of the $J^{1/2}$ -V curves.

Contact angle measurements and interfacial tension calculation

Contact angles of the materials were measured by a contact angle analyzer (Phoenix 150, SEO, Korea). The surface tension of the thin films obtained from the Wu model, using both the contact angles from water and glycerol on pristine films.^{4, 5} The detailed calculation method is described below.

$$\gamma_{\text{water}}(1 + \cos\theta_{\text{water}}) = \frac{4\gamma_{\text{water}}^{\text{d}}\gamma^{\text{d}}}{\gamma_{\text{water}}^{\text{d}} + \gamma^{\text{d}}} + \frac{4\gamma_{\text{water}}^{\text{p}}\gamma^{\text{p}}}{\gamma_{\text{water}}^{\text{p}} + \gamma^{\text{p}}}$$

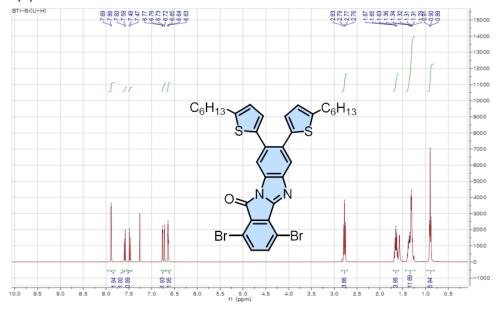
$$\gamma_{\rm Glycerol} \left(1 + \cos\theta_{\rm Glycerol}\right) = \frac{4\gamma_{\rm Glycerol}^{\rm d}\gamma^{\rm d}}{\gamma_{\rm Glycerol}^{\rm d} + \gamma^{\rm d}} + \frac{4\gamma_{\rm Glycerol}^{\rm p}\gamma^{\rm p}}{\gamma_{\rm Glycerol}^{\rm p} + \gamma^{\rm p}}$$

$$\gamma^{\text{total}} = \gamma^{\text{d}} + \gamma^{\text{p}}$$

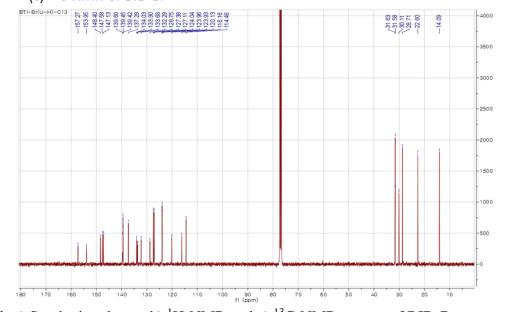
Where γ^{total} is the total surface tension of the materials that comes from the sum of dispersion component γ^d and polar component γ^p . Then, the interfacial tension (γ^{D-A} , D = donor and A= acceptor) between donor and acceptor was calculated based on the surface tensions, following the calculation below.

$$\gamma^{\text{Donor-Acceptor}} = \gamma^{\text{Donor}} + \gamma^{\text{Acceptor}} - \frac{4\gamma^{\text{d}}_{\text{Donor}}\gamma^{\text{d}}_{\text{Acceptor}}}{\gamma^{\text{d}}_{\text{Donor}} + \gamma^{\text{d}}_{\text{Acceptor}}} - \frac{4\gamma^{\text{p}}_{\text{Donor}}\gamma^{\text{d}}_{\text{Acceptor}}}{\gamma^{\text{p}}_{\text{Donor}} + \gamma^{\text{d}}_{\text{Acceptor}}}$$

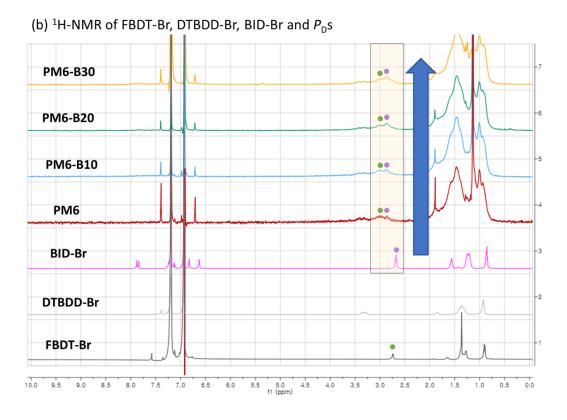
Pseudo-freestanding tensile test


The blends films were prepared with the same conditions as those used for the OSC fabrications. The films were spin-casted onto polystyrene sulfonic acid-coated glass substrates, and cut into a dog-bone shape by a femtosecond laser. Then, the films were floated onto the water surface, and attached to the grips by van der Waals forces. The strain was applied at a fixed strain rate $(0.8 \times 10^{-3} \text{ s}^{-1})$, and the tensile load values were measured by a load cell with high resolution (LTS-10GA, KYOWA, Japan). Elastic modulus was calculated using the least square method for the slope of the linear region of the stress–strain curve within 0.5% strain. The crack-onset strain (COS) of a thin film was determined as the strain value that the tensile load starts to decrease rapidly by cracking.

Supplementary Figures & Tables


(a) BID-Br synthesis
$$C_6H_{13}$$

$$C_6H_{1$$


(b) ¹H-NMR of BID-Br

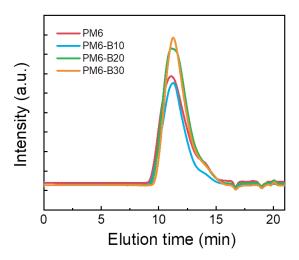
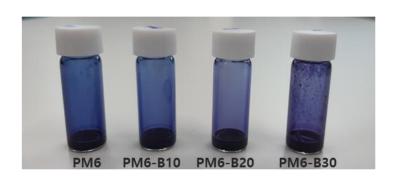

(c) 13C-NMR of BID-Br

Fig. S1. a) Synthetic scheme, b) ¹H-NMR and c) ¹³C-NMR spectra of BID-Br.



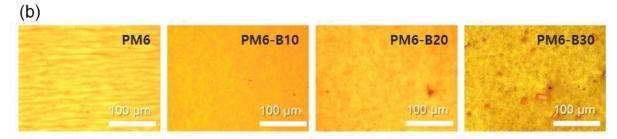

Fig. S2. a) Polymerization scheme and b) overlapped 1 H-NMR spectra of brominated monomers and P_{DS} .

Fig. S3. GPC curves of $P_{\rm D}$ s.

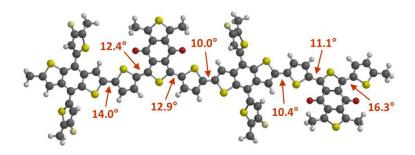
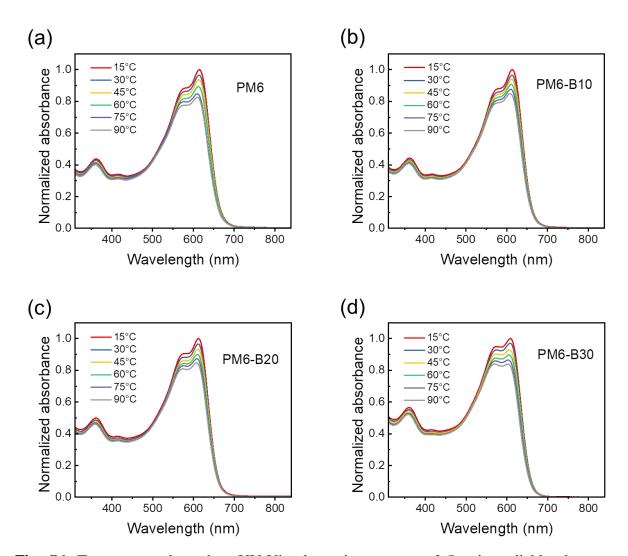
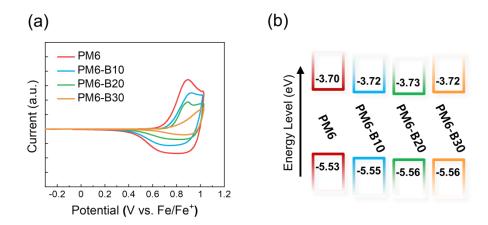
(a)

Fig. S4. a) Photo images of P_D solutions in chloroform (5 mg mL⁻¹). Solutions were heated at 60 °C for 12 h and, then, cooled to room temperature. b) OM images of P_D neat films from the solutions.

Table S1. Solubilities of P_{DS} in chloroform.

$P_{ m D}$ s	Solubility [mg mL ⁻¹]		
PM6	20.2		
PM6-B10	23.0		
PM6-B20	16.6		
PM6-B30	2.8		

Conformation of FBDT-DTBDD-FBDT-DTBDD

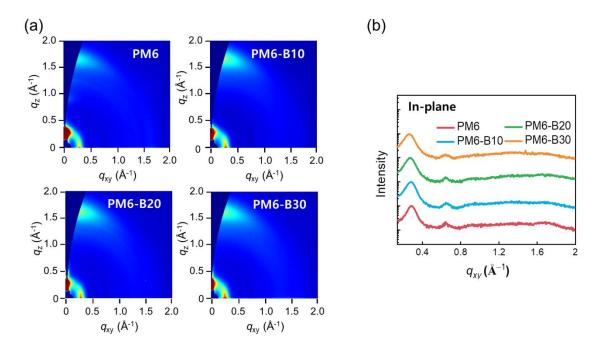

Fig. S5. Simulated molecular conformation of FBDT-DTBDD-FBDT-DTBDD.

Fig. S6. Temperature-dependent UV-Vis absorption spectra of P_{DS} in o-dichlorobenzene solvent.

Fig. S7. a) Cyclic voltammetry curves of $P_{\rm D}$ s; b) energy levels of $P_{\rm D}$ s.

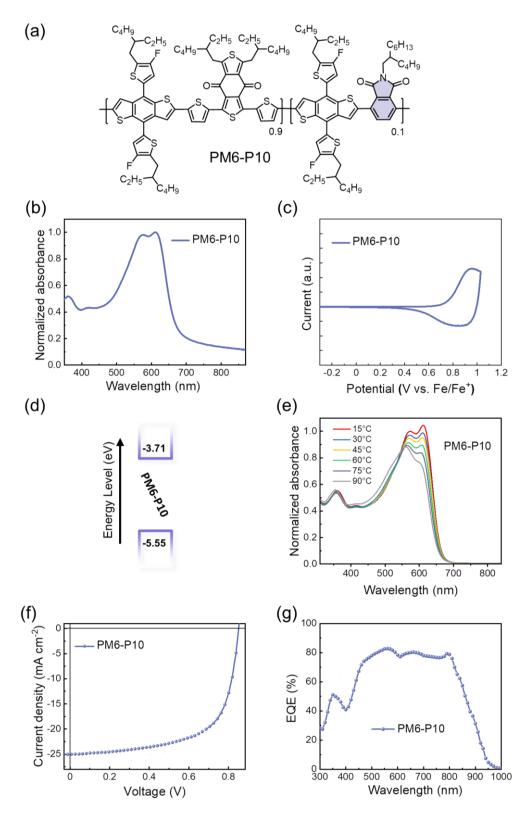

Fig. S8. GIXS a) 2D images and b) 1D linecut profiles of neat P_D films.

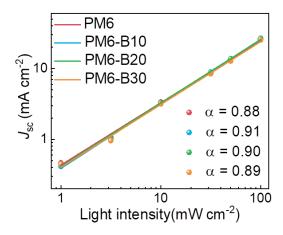
Table S2. GIXS information of neat P_D films.

$P_{ m D}$ s	$d_{(100)}$ [Å]	$L_{ m c(100)}$ [Å]	$d_{(010)} \ ext{ [Å]}$	$L_{ m c(010)}$ [Å]
PM6	22.1	74.1	3.82	27.4
PM6-B10	22.7	67.4	3.82	26.1
PM6-B20	23.3	64.5	3.83	24.9
PM6-B30	24.2	61.2	3.85	24.8

Fig. S9. a) Molecular structure of Y6-BO; b) UV-Vis absorption spectrum of Y6-BO in a film; c) cyclic voltammetry curve and d) energy levels of Y6-BO; GIXS linecut profiles of neat Y6-BO film: e) in-plane direction and f) out-of-plane direction.

Fig. S10. a) Molecular structure of PM6-P10; b) UV-Vis absorption spectrum of PM6-P10 in film; c) cyclic voltammetry curve; d) energy levels and e) temperature-dependent UV-Vis absorption spectrum (in *o*-dichlorobenzene) of PM6-P10. Photovoltaic characteristics of PM6-P10:Y6-BO OSC; f) *J-V* curve and g) EQE spectrum.

Table S3. Material characteristics of PM6-P10.


$P_{ m DS}$	$M_{ m n}(D)^{ m a)}$ [kg mol ⁻¹]	$\lambda_{\mathrm{film}}^{\mathrm{max b}}$ [nm]	$E_{ m g}^{ m opt b)}$ [eV]	E _{HOMO} c) [eV]	E _{LUMO} d) [eV]	$\mu_{\rm h}^{\rm SCLC} (\times 10^{-4})$ [cm ² V ⁻¹ s ⁻¹]
PM6-P10	131 (2.75)	612	1.84	-5.55	-3.71	0.8 ± 0.2

a) Estimated by GPC with 1,2,4-trichlorobenzene as eluent. b) Evaluated from UV-Vis absorption spectrum in film. c) Measured from cyclic-voltammetry d) Calculated by using equation of $E_{\rm LUMO} = E_{\rm HOMO} + E_{\rm g}^{\rm opt}$.

Table S4. Photovoltaic performance of PM6-P10:Y6-BO OSC.

P_{D}	$V_{ m oc} \ [{ m V}]$	$J_{ m sc}$ [mA cm ⁻²]	Calcd. $J_{\rm sc}^{\rm a)}$ [mA cm ⁻²]	FF	$\begin{array}{c} PCE_{max} \ (PCE_{avg})^{b)} \\ [\%] \end{array}$
PM6-P10	0.85	25.04	24.46	0.65	$13.77 \ (13.30 \pm 0.32)$

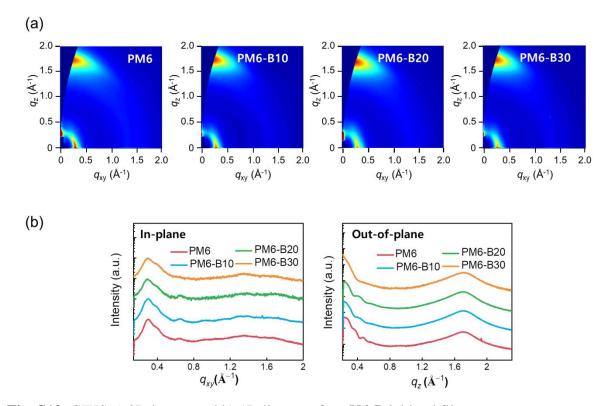

a) Calculated from the EQE spectrum. b) Average values based on at least 10 devices.

Fig. S11. Light intensity—dependent J_{sc} of P_D :Y6-BO OSCs.

Table S5. SCLC mobilities of the P_D :Y6-BO blend films.

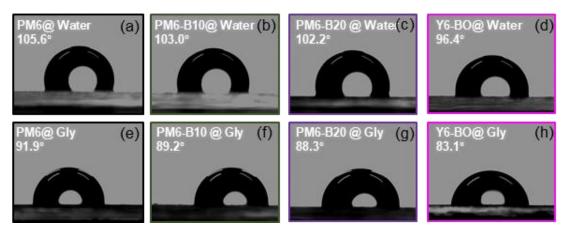
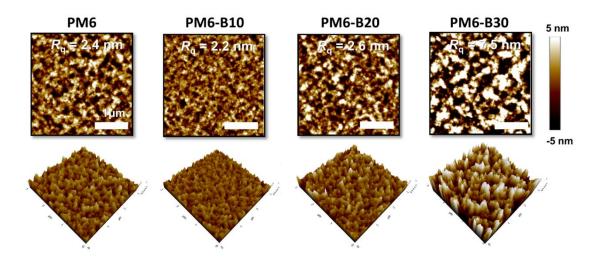

P_{D} s	$\mu_{\rm e} ({\rm cm}^2 {\rm V}^{-1} {\rm s}^{-1})$	$\mu_{\rm h}({\rm cm^2~V^{-1}~s^{-1}})$	$\mu_{ m e}\!/\mu_{ m h}$
PM6	$(6.1 \pm 0.7) \times 10^{-4}$	$(4.8 \pm 0.4) \times 10^{-4}$	1.3
PM6-B10	$(5.7 \pm 0.3) \times 10^{-4}$	$(4.8 \pm 0.7) \times 10^{-4}$	1.2
PM6-B20	$(5.5 \pm 0.5) \times 10^{-4}$	$(4.1 \pm 0.4) \times 10^{-4}$	1.3
PM6-B30	$(2.7 \pm 1.0) \times 10^{-4}$	$(1.4 \pm 0.7) \times 10^{-4}$	1.9

Fig. S12. GIXS a) 2D image and b) 1D linecut of P_D :Y6-BO blend films.

Table S6. GIXS information of P_D :Y6-BO blend films.

D c	$d_{(100)}$	$L_{c(100)}$	$d_{(010)}$	$L_{c(010)}$
$P_{ m DS}$	[Å]	[Å]	[Å]	[Å]
PM6	20.7	62.8	3.71	23.9
PM6-B10	20.8	57.0	3.70	23.3
PM6-B20	21.1	52.0	3.71	23.4
PM6-B30	20.9	47.0	3.70	22.2

Fig. S13. Photo images of contact angle measurements with (a - d) water and (e - h) glycerol on P_D and Y6-BO neat films.


Table S7. Surface tensions (γ) of solvents (water and glycerol) and their dispersive (γ^d) and polar (γ^p) components in previous work.⁶ All units are [mN m⁻¹].

solvents	γ^{d}	γ^{p}	γ ^{total}
water	21.8	51.0	72.8
glycerol	37.0	26.4	63.4

Table S8. Contact angles and surface tension of P_{DS} and Y6-BO, and the interfacial tension between P_{DS} and Y6-BO.

	Contact a	Contact angle [deg]		·	γ ^{D-A a)} [mN m ⁻¹]	
Materials	water	Glycerol tension [mN m ⁻¹]		Blend systems		
PM6	105.5±0.5	91.8±0.2	21.6	РМ6:Ү6-ВО	0.93	
PM6-B10	102.9±0.7	89.1±0.4	22.7	PM6-B10:Y6-BO	0.46	
PM6-B20	102.3±0.3	88.2±0.4	23.3	PM6-B20:Y6-BO	0.43	
Y6-BO	96.7±0.7	83.0±0.3	25.3	_		

a) The interfacial tension between the $P_{\rm D}$ s and $S_{\rm A}$.

Fig. S14. AFM images of P_D :Y6-BO blend films.

Table S9. Mechanical properties of P_D neat films and P_D :Y6-BO blend films.

	Neat films			Blend films (w Y6-BO)		
$P_{ m DS}$	COS _{avg} [%]	Modulus (GPa)	Toughness (MJ m ⁻³)	COS _{avg} [%]	Modulus (GPa)	Toughness (MJ m ⁻³)
PM6	14.9 ± 1.7	0.87 ± 0.04	3.5 ± 0.4	2.0 ± 0.5	1.36 ± 0.04	0.3 ± 0.1
PM6-B10	23.8 ± 2.0	0.83 ± 0.04	5.9 ± 0.4	11.4 ± 0.5	1.19 ± 0.11	4.1 ± 0.4
PM6-B20	22.7 ± 0.7	0.90 ± 0.05	5.5 ± 0.5	12.6 ± 0.8	1.91 ± 0.34	4.8 ± 0.8

References

- 1. X. Cao, A. J. Miao, M. Zhu, C. Zhong, C. Yang, H. Wu, J. Qin and Y. Cao, *Chem. Mater.*, 2015, **27**, 96-104.
- 2. J. Yao, B. Qiu, Z.-G. Zhang, L. Xue, R. Wang, C. Zhang, S. Chen, Q. Zhou, C. Sun. C. Yang, M. Xiao, L. Meng and Y. Li, *Nat. Commun.*, 2020, **11**, 2726.
- 3. M. Zhang, X. Guo, W. Ma, H. Ade and J. Hou, Adv. Mater., 2020, 11, 4655-4660.
- 4. J. Comyn, Int. J. Adhes., 1992, 12, 145-149.
- 5. S. Wu, J. Polym. Sci., Part C: Polym. Symp., 1971, 34, 19-30.
- 6. E. Rynkowska, K. Fatyeyeva, S. Marais, J. Kujawa, W. Kujawski, *Polymers* 2019, 11, 1799.