## Supporting Information

## Macrocyclization-Induced Phosphorescent Enhancement of Pyri-dinium-based Macrocycles

Shuo Li, ${ }^{\ddagger, \mathrm{a}, \mathrm{b}}$ Zhi-Yuan Zhang, ${ }^{\ddagger, \mathrm{a}}$ Jing-Fang Lv, ${ }^{\mathrm{a}}$ Ling Li, ${ }^{\text {a Jian Lic }}$, and Chunju Li ${ }^{*, a}$
a. Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387 (P. R. China).
b. School of Advanced Study, Taizhou University, Taizhou 318000, Zhejiang, (P. R. China).
c. School of Chemistry and Chemical Engineering, Henan Normal University, P. R. China.
$\ddagger$ The authors contributed equally.
Corresponding Author
*E-mail: cjli@shu.edu.cn

## Table of Contents

Section I. Materials/Methods/Instrumentation ..... 2
Section II. Synthetic Protocols ..... 3-15
Section III. Photophysical properties ..... 16-26
Section IV. Single-Crystal Structures of macrocycles and monomers ..... 27-32

## Section I. Materials/Methods/Instrumentation

All reagents and solvents were commercially available and used without further purification, unless otherwise noted. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded using a Bruker Avance 500 MHz spectrometer. High-resolution mass spectra (HRMS) was determined on a SCIEX, X-500R QTOF instrument. Photoluminescence spectra and lifetime were obtained on FLS900 and FLS1000. Fluorescence and phosphorescence quantum efficiencies were measured on HAMAMATSU C9920-02. Melting points were obtained on an X-4 digital melting point apparatus. Single crystal X-ray diffraction data were collected on Bruker smart Apex 2, Bruker D8 Venture. The electrostatic potential maps of PC and $\mathrm{PC} \cdot 2 \mathrm{Cl}$ were performed by using Gaussian 09 program with B3LYP-D3(BJ)/6-31G + (d, p) and B3LYP-D3(BJ)/6-31G ++ (d, p) level, respectively.

## Section II. Synthetic Protocols



Scheme S1. Synthesis of monomer PM.

Under the protection of $\mathrm{N}_{2}$ atmosphere, 3,5-dibromopyridine ( $2.4 \mathrm{~g}, 10 \mathrm{mmol}$ ), 2,4dimethoxybenzeneboronic acid ( $5.5 \mathrm{~g}, 30 \mathrm{mmol}$ ), and [1,1'-Bis(diphenylphosphino) ferrocene] dichloropalladium (II) $\left(\mathrm{Pd}(\mathrm{Dppf}) \mathrm{Cl}_{2}, 0.73 \mathrm{~g}, 1.0 \mathrm{mmol}\right)$ were dissolved in dioxane ( 150 mL ). The sodium carbonate ( $3.2 \mathrm{~g}, 30 \mathrm{mmol}$ ) in water ( 15 mL ) was added into the solution and stirred for 12 h at $90^{\circ} \mathrm{C}$. Upon cooling to room temperature, water $(150 \mathrm{~mL})$, dichloromethane ( 150 mL ) was added and stirred. After filtration of the solution, the solution was partitioned between dichloromethane and water. The product was extracted from the organic layer and evaporated under reduced pressure. The product was purified by column chromatography on silica gel (eluent: dichloromethane), resulted in the white product PM (3.2 g, 91\%). M. p. $157-158{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$ ) $\delta 8.65$ ( $\mathrm{s}, 2 \mathrm{H}$ ), 7.94 ( $\left.\mathrm{s}, 1 \mathrm{H}\right), 7.29$ (d, $J=10.0 \mathrm{~Hz}$, 2H), 6.61-6.58 (m, 4H), $3.86(\mathrm{~s}, 6 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298$ K) $\delta 160.99,157.78,148.10,137.39,133.30,131.35,120.20,104.92,99.10,55.64$, 55.56. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{4}\right]^{+}$, 352.1543; found, 352.1563.


Scheme S2. Synthesis of macrocycle PC.

To the solution of $\mathbf{P M}(3.5 \mathrm{~g}, 10 \mathrm{mmol})$ in 1, 2-dichloroethane ( 200 mL ) was added paraformaldehyde ( $0.90 \mathrm{~g}, 30 \mathrm{mmol}$ ). Trifluoromethanesulfonic acid $(0.45 \mathrm{ml}, 5.0$
mmol ) was then added to the reaction mixture. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 3 hours. Then the reaction was quenched by addition of 200 mL saturated aqueous $\mathrm{NaHCO}_{3}$. The solution was partitioned between dichloromethane and saturated aqueous $\mathrm{NaHCO}_{3}$. The product was extracted from the organic layer. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The product was purified by column chromatography on silica gel (eluent: $3 / 1, \mathrm{v} / \mathrm{v}$, dichloromethane: ethyl acetate), resulted in the white product $\mathbf{P C}(0.69 \mathrm{mg}, 19 \%)$. M. p. $>320{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $298 \mathrm{~K}) \delta 8.76(\mathrm{~s}, 4 \mathrm{H}), 7.33(\mathrm{~s}, 2 \mathrm{H}), 6.80(\mathrm{~s}, 4 \mathrm{H}), 6.57(\mathrm{~s}, 4 \mathrm{H}), 3.86(\mathrm{~s}, 12 \mathrm{H}), 3.86(\mathrm{~s}$, 12 H ), 3.85 ( $\mathrm{s}, 4 \mathrm{H}$ ). ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$ ) $\delta 158.44,155.68,148.55$, $136.35,134.22,131.67,121.16,118.85,95.35,55.80,55.70,28.17$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\left[\mathrm{C}_{44} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{8}\right]^{+}, 727.3014$; found, 727.3011.

Table S1. Screening of reaction conditions for PC

| Entry | Solvents | Catalysts | Concentrations $[\mathrm{mM}]$ | Reaction time | Yields $(\%)^{[a]}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | DCM | $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}$ | 5 | 1.5 h | 15 |
| 2 | $\mathrm{CHCl}_{3}$ | $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ | 5 | 2.0 h | 37 |
| 3 | DCE | $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ | 5 | 1.8 h | 35 |
| 4 | $\mathrm{CH}_{3} \mathrm{CN}$ | $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}$ | 5 | 2.4 h | 18 |
| 5 | DCM | TfOH | 5 | 3.0 h | 39 |
| 6 | $\mathrm{CHCl}_{3}$ | TfOH | 5 | 4.0 h | 42 |
| 7 | DCE | TfOH | 5 | 3.0 h | 65 |
| 8 | $\mathrm{CH}_{3} \mathrm{CN}$ | TfOH | 5 | 3.5 h | 21 |
| 9 | DCE | $\mathrm{FeCl}_{3}$ | 5 | 2.3 h | 11 |
| 10 | DCE | $\mathrm{AlCl}_{3}$ | 5 | 2.4 h | 12 |

[a] Yields of isolated product; DCM: dichloromethane; DCE: 1,2-dichloroethane.


Scheme S3. Synthesis of macrocycles PC•2X.

Synthesis of PC•2I and PC•2Cl. PC ( $3.6 \mathrm{~g}, 5.0 \mathrm{mmol}$ ) and methyl iodide ( $1.2 \mathrm{~mL}, 20$ mmol ) were dissolved in 25 mL anhydrous acetonitrile and then refluxed for 12 h . Upon cooling to room temperature, the reaction mixture was concentrated and the resulting yellow precipitate was washed with ethyl ether. A yellow solid ( $\mathbf{( P C} \cdot 2 I$ ) was obtained in a $98 \%$ yield ( 4.9 g ). After dispersing the yellow solid in 100 mL deionized water, saturated $\mathrm{NH}_{4} \mathrm{PF}_{6}$ aqueous solution were added and stirred for 24 h at $65^{\circ} \mathrm{C}$. After standing for a while, the precipitate was filtered and then dried under vacuum to obtain 4.8 g yellow solid in $94 \%$ yield. Subsequently, to the solution of the macrocycle with counterion of $\mathrm{PF}_{6}{ }^{-}(0.42 \mathrm{~g}, ~ 0.4 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ was added tetrabutylammonium chloride and stirred until no solid appear any more. After standing for a while, the precipitate was filtered and washed with $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL} \times 3)$. A pale yellow solid $(\mathbf{P C} \cdot \mathbf{2 C I})$ was obtained in a $43 \%$ yield $(0.14 \mathrm{~g}) . \mathrm{M} . \mathrm{p} .>320^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}$ ) $\delta 8.83(\mathrm{~s}, 4 \mathrm{H}), 7.74(\mathrm{~s}, 2 \mathrm{H}), 6.69(\mathrm{~s}, 4 \mathrm{H}), 6.56(\mathrm{~s}, 4 \mathrm{H}), 4.42$ $(\mathrm{s}, 6 \mathrm{H}), 3.85(\mathrm{~s}, 12 \mathrm{H}), 3.66(\mathrm{~s}, 12 \mathrm{H}), 3.66(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}$ ) $\delta$ $159.79,156.09,141.97,141.93,141.49,137.63,120.61,113.25,96.12,55.89,55.69$, 48.57, 28.39. HRMS (ESI) m/z: $[1 / 2 \mathrm{M}+\mathrm{H}]^{+}$calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{4}\right]^{+}$, 379.1773; found, 379.1771.

Synthesis of $\mathbf{P C \cdot 2 B r}$. To the solution of the macrocycle with counterion of PF6 ${ }^{-}$(0.42 $\mathrm{g}, 0.4 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{ml})$ was added tetrabutylammonium bromide and stirred at room temperature until no solid appear any more. After standing for a while, the precipitate was filtered and washed with acetone ( $5 \mathrm{~mL} \times 3$ ). A pale yellow solid ( PC•2Br) was obtained in a $62 \%$ yield ( 0.27 g ). M. p. $>320^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz ,

DMSO- $\left.d_{6}, 298 \mathrm{~K}\right) \delta 9.00(\mathrm{~s}, 4 \mathrm{H}), 8.71(\mathrm{~s}, 2 \mathrm{H}), 7.01(\mathrm{~s}, 4 \mathrm{H}), 6.82(\mathrm{~s}, 4 \mathrm{H}), 4.40(\mathrm{~s}, 6 \mathrm{H})$, $3.89(\mathrm{~s}, 12 \mathrm{H}), 3.87(\mathrm{~s}, 12 \mathrm{H}), 3.80(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 125 MHz , DMSO- $d_{6}, 298 \mathrm{~K}$ ) $\delta$ $159.56,155.68,142.46,142.23,137.89,132.12,120.52,113.33,95.95,56.23,56.02$, 48.32, 27.69. HRMS (ESI) m/z: $[1 / 2 \mathrm{M}+\mathrm{H}]^{+}$calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{4}\right]^{+}$, 379.1773; found, 379.1769.


Scheme S4. Synthesis of monomers PM•X.
$\mathbf{P M} \cdot \mathbf{C l}$ was prepared in $38 \%$ yield as a pale yellow powder according to a procedure similar to that described for $\mathbf{P M} \cdot \mathbf{2 C l}$. M. p. $138-139{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 298$ K) $\delta 8.47(\mathrm{~s}, 2 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.58-6.56(\mathrm{~m}, 2 \mathrm{H}), 6.48(\mathrm{~d}$, $J=5.00 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 6 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$, 298 K) $\delta 162.09,157.11,142.67,140.63,137.14,130.84,113.92,106.43,98.61,55.58$, 55.52, 48.02. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{4}\right]^{+}, 367.1773$; found, 367.1773.
$\mathbf{P M} \cdot \mathbf{B r}$ was synthesized in $65 \%$ yield as a pale yellow powder according to a procedure similar to that described for $\mathbf{P M} \cdot \mathbf{2 B r}$. M. p. 127-128 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , DMSO$\left.d_{6}, 298 \mathrm{~K}\right) \delta 9.02(\mathrm{~s}, 2 \mathrm{H}), 8.69(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.80-6.75(\mathrm{~m}, 4 \mathrm{H})$, 4.42 (s, 3H), $3.87(\mathrm{~s}, 6 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 125 MHz, DMSO- $d_{6}, 298 \mathrm{~K}$ ) $\delta$ $162.32,157.57,143.74,142.17,136.60,131.65,114.95,106.35,99.16,56.09,55.69$, 48.12. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{4}\right]^{+}$, 367.1773; found, 367.1732 .


Figure S1 ${ }^{1} \mathrm{H}$ NMR spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$ ) of $\mathbf{P M}$.




Figure $\mathbf{S 2}{ }^{13} \mathrm{C}$ NMR spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$ ) of $\mathbf{P M}$.


Figure S3 HMRS spectrum of PM.





Figure S4 ${ }^{1} \mathrm{H}$ NMR spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$ ) of PC. (* = dichloromethane peak signals).


Figure S5 ${ }^{13} \mathrm{C}$ NMR spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$ ) of PC. (* = dichloromethane peak signals).


Figure S6 HMRS spectrum of PC.


Figure $\mathbf{S 7}{ }^{1} \mathrm{H}$ NMR spectrum ( $500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}$ ) of $\mathbf{P C} \cdot \mathbf{2 C l}$.


べ



Figure $\mathbf{S 8}{ }^{1} \mathrm{C}$ NMR spectrum $\left(125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}\right)$ of $\mathbf{P C} \cdot \mathbf{2 C l}$.


Figure S9 HMRS spectrum of $\mathbf{P C} \cdot \mathbf{2 C l}$.


Figure S10 ${ }^{1} \mathrm{H}$ NMR spectrum ( 500 MHz , DMSO- $d_{6}$, 298 K ) of $\mathbf{P C} \cdot 2 \mathbf{B r}$.


Figure S11 ${ }^{1} \mathrm{C}$ NMR spectrum ( 125 MHz , DMSO- $d_{6}$, 298 K ) of $\mathbf{P C} \cdot 2 \mathbf{B r}$.


Figure $\mathbf{S 1 2}$ HMRS spectrum of $\mathbf{P C} \cdot \mathbf{2 B r}$.


Figure S13 ${ }^{1} \mathrm{H}$ NMR spectrum ( $500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}$ ) of $\mathbf{P M} \cdot \mathbf{C l}$.

Figure $\mathbf{S 1 4}{ }^{1} \mathrm{C}$ NMR spectrum $\left(125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}\right)$ of $\mathbf{P M} \cdot \mathbf{C l}$.


Figure S15 HMRS spectrum of $\mathbf{P M} \cdot \mathbf{C l}$.


Figure $\mathbf{S 1 6}{ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}\right.$, DMSO- $d_{6}, 298 \mathrm{~K}$ ) of $\mathbf{P M} \cdot \mathbf{B r}$.


Figure $\mathbf{S 1 7}{ }^{1} \mathrm{C}$ NMR spectrum ( 125 MHz , DMSO- $d_{6}, 298 \mathrm{~K}$ ) of $\mathbf{P M} \cdot \mathbf{B r}$.


Figure $\mathbf{S 1 8}$ HMRS spectrum of $\mathbf{P M} \cdot \mathbf{B r}$.


Figure S19. The single crystal structures of (a) monomer PM and (b) macrocycle PC. All hydrogen atoms were omitted for clarity and methylene were colored as deep cyan.

## Section III. Photophysical properties



Figure S20. (a) Excitation spectra of $\mathbf{P M} \cdot \mathbf{C l}$ at 470 nm ; (b) Photoluminescence (black) and phosphorescence spectra (red) of $\mathbf{P M} \cdot \mathbf{C l}$ under 350 nm excitation; (c) Time resolved PL decay of $\mathbf{P M} \cdot \mathbf{C l} @ 470 \mathrm{~nm}$ in solid at room temperature; (d) Time resolved PL decay of $\mathbf{P M} \cdot \mathbf{C l} @ 500 \mathrm{~nm}$ and 565 nm in solid state at room temperature.


Figure S21. (a) Excitation spectra of PC•2CI at 470 nm ; (b) Time resolved PL decay of $\mathbf{P C} \cdot \mathbf{2 C l} @ 470 \mathrm{~nm}$ in solid state at room temperature.


Figure S22. (a) Fluorescence and (b) phosphorescence quantum efficiency of $\mathbf{P M} \cdot \mathbf{C l}$.


Figure S23. (a) Fluorescence and (b) phosphorescence quantum efficiency of $\mathbf{P C} \cdot \mathbf{2 C l}$.


Figure S24. (a) Excitation spectra of $\mathbf{P C} \cdot \mathbf{2 B r}$ at 481 nm ; (b) Photoluminescence (black) and phosphorescence spectra (red) of $\mathbf{P C} \cdot \mathbf{2 B r}$ under 340 nm excitation; (c) Phosphorescence spectra of $\mathbf{P M} \cdot \mathbf{B r}$ (black) and $\mathbf{P C} \cdot \mathbf{2 B r}$ (red) after 340 nm excitation;
(d) Time resolved PL decay of $\mathbf{P C} \cdot \mathbf{2 B r} @ 481 \mathrm{~nm}$ in solid at room temperature.


Figure S25. (a) Excitation spectra of $\mathbf{P M} \cdot \mathbf{B r}$ at 470 nm ; (b) Photoluminescence (black) and phosphorescence spectra (red) of $\mathbf{P M} \mathbf{M} \cdot \mathbf{B r}$ under 340 nm excitation; (c) Time resolved PL decay of $\mathbf{P M} \mathbf{M} \cdot \mathbf{B r} @ 470 \mathrm{~nm}$ in solid at room temperature.


Figure S26. (a) Fluorescence and (b) phosphorescence quantum efficiency of $\mathbf{P M} \cdot \mathbf{B r}$.


Figure S27. (a) Fluorescence and (b) phosphorescence quantum efficiency of $\mathbf{P C} \cdot \mathbf{2 B r}$.


Figure S28. (a) Excitation spectra of PM at 310 nm ; (b) Photoluminescence (black) and phosphorescence spectra (red) of $\mathbf{P M}$ under 310 nm excitation; (c) Time resolved PL decay of PM@338 nm in solid state at room temperature.


Figure S29. (a) Excitation spectra of PC at 355 nm ; (b) Photoluminescence (black) and phosphorescence spectra (red) of PC under 310 nm excitation; (c) Phosphorescence spectra of PM (black) and PC (red) after 310 nm excitation; (d) Time resolved PL decay of PC@355 nm and 458 nm in solid state at room temperature.


Figure S30. (a) Fluorescence and (b) phosphorescence quantum efficiency of PC.


Figure S31. (a) Fluorescence and (b) phosphorescence quantum efficiency of PM.


Figure S32. (a, b) Phosphorescent spectra of $\mathbf{P C} \cdot \mathbf{2 C l}$ and $\mathbf{P C} \cdot \mathbf{2 B r}$ in solid state at 298
K and 77 K . (c, d) Time resolved PL decay of $\mathbf{P C} \cdot \mathbf{2 C I}$ and $\mathbf{P C} \cdot \mathbf{2 B r}$ in solid state at 77 K.


Figure S33. Simulated XRD of macrocycles $\mathbf{P C} \cdot \mathbf{2 B r}$ and $\mathbf{P C} \cdot \mathbf{2 C I}$ and monomers $\mathbf{P M} \cdot \mathbf{C l}$ and $\mathbf{P M} \cdot \mathbf{B r}$ based on single crystals.

The simulated PXRD of macrocycles $\mathrm{PC} \cdot 2 \mathrm{Br}$ and $\mathrm{PC} \cdot 2 \mathrm{Cl}$ and monomers $\mathrm{PM} \cdot \mathrm{Cl}$ and $\mathrm{PM} \cdot \mathrm{Br}$ were compared. Macrocycles possessed totally different XRD pattern with their monomers, indicating the difference of their superstructures.


Figure S34. (a) Excitation spectra of $\mathbf{P C \cdot 2 C l}$. (b) Photoluminescence spectra of $\mathbf{P M} \cdot \mathbf{C l}$ (black) and $\mathbf{P C} \cdot \mathbf{2 C l}$ (red) in aqueous solution under 320 nm excitation. $([\mathbf{P M} \cdot \mathbf{C l}]=$ $\left.2 \times 10^{-6} \mathrm{~mol} / \mathrm{L} ;[\mathbf{P C} \cdot \mathbf{2 C I}]=1 \times 10^{-6} \mathrm{~mol} / \mathrm{L}\right)$


Figure S35. (a, b) The concentration-dependent UV-Vis absorption spectra of PC•2CI and $\mathbf{P M} \cdot \mathbf{C l}$ in aqueous solution. (c, d) The concentration-dependent photoluminescence spectra and normalized photoluminescence spectra of $\mathbf{P C} \cdot \mathbf{2 C I}$ in aqueous solution. $\left(1 \times 10^{-6}, 1 \times 10^{-5}\right.$, and $5 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$ for $\mathbf{P C} \cdot \mathbf{2 C l} ; 2 \times 10^{-6}, 2 \times 10^{-5}$, and $1 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$ for $\mathbf{P M} \cdot \mathbf{C l}$ ). As one $\mathbf{P C} \cdot \mathbf{2 C l}$ possess two $\mathbf{P M} \cdot \mathbf{C l}$ unites, the concentration of $\mathbf{P M} \cdot \mathbf{C l}$ is twice of $\mathbf{P C} \cdot \mathbf{2 C I}$ to keep the same concentration of chromophores.



Figure S36. Single crystal structures of $\mathbf{P M} \cdot \mathbf{C l}$ in b axis (a) and c axis (b). Color assign:
C, gray; O, red; N, blue.



Figure S37. Single crystal structures of $\mathbf{P M} \cdot \mathbf{B r}$ in b axis (a) and c axis (b). Color assign:
C, gray; O, red; N, blue.





Figure S38. Single crystal structures of $\mathbf{P C} \cdot \mathbf{2 C l}$. (a) packing mode in b axis; (b) packing mode in sliding b axis; (c) packing mode in a axis; (d) packing mode in c axis. Color assign: C, gray; O, red; N, blue.










Figure S39. Single crystal structures of $\mathbf{P C} \cdot \mathbf{2 B r}$. (a) packing mode in a axis; (b) packing mode in sliding a axis; (c) packing mode in c axis; (d) packing mode in b axis. Color assign: C, gray; O, red; N, blue.

## Section IV. Single-Crystal Structures of macrocycles and monomers

## Crystal structure of PC (CCDC: 2169351)

Method: Single crystals, suitable for X-ray crystallography, were obtained as colorless block by slow vapor diffusion of isopropyl ether ( 1.5 mL ) into a chloroform ( 3 mL ) solution of $\mathbf{P C}(5 \mathrm{mg})$ at room temperature for 7 days. Crystal data of $\mathbf{P C}$ was collected on Bruker smart Apex 2.

Table S2. Crystal data and structure refinement for PC.

| CCDC | 2169351 |
| :---: | :---: |
| Empirical formula | $\mathrm{C}_{46} \mathrm{H}_{44} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{O}_{8}$ |
| Formula weight | 965.53 |
| Temperature | 296(2) K |
| Wavelength | 0.71073 Å |
| Crystal system | Triclinic |
| Space group | P -1 |
| Unit cell dimensions | $\mathrm{a}=10.4158(9) \AA \quad \alpha=65.199(2)^{\circ}$. |
|  | $b=11.2534(9) \AA \quad \beta=66.882(2)^{\circ}$. |
|  | $\mathrm{c}=12.4707(9) \AA \quad \gamma=65.616(2)^{\circ}$. |
| Volume | $1165.21(16) \AA^{3}$ |
| Z | 1 |
| Density (calculated) | $1.376 \mathrm{Mg} / \mathrm{m}^{3}$ |
| Absorption coefficient | $0.423 \mathrm{~mm}^{-1}$ |
| F(000) | 500 |
| Crystal size | $0.150 \times 0.120 \times 0.100 \mathrm{~mm}^{3}$ |
| Theta range for data collection | 2.332 to $24.999^{\circ}$. |
| Index ranges | $-12<=\mathrm{h}<=12,-13<=\mathrm{k}<=13,-14<=1<=14$ |
| Reflections collected | 18685 |
| Independent reflections | 4088 [ $\mathrm{R}(\mathrm{int})=0.0884]$ |
| Completeness to theta $=25.242^{\circ}$ | 97.1 \% |
| Absorption correction | Semi-empirical from equivalents |
| Max. and min. transmission | 0.7456 and 0.6648 |
| Refinement method | Full-matrix least-squares on $\mathrm{F}^{2}$ |
| Data / restraints / parameters | 4088 / 33 / 326 |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.015 |
| Final R indices [ $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$ ] | $\mathrm{R}_{1}=0.0749, \mathrm{wR} 2=0.1683$ |
| R indices (all data) | $\mathrm{R}_{1}=0.1403, \mathrm{wR} 2=0.2143$ |

## Crystal structure of $\mathrm{PC} \cdot \mathbf{2 C l}$ (CCDC: 2169350)

Method: Single crystals, suitable for X-ray crystallography, were obtained as pale yellow block by slow vapor diffusion of isopropyl ether ( 2 mL ) into an ethanol ( 3 mL ) solution of $\mathbf{P C} \cdot \mathbf{2 C l}(8 \mathrm{mg})$ at room temperature for 5 days. Crystal data of $\mathbf{P C} \cdot \mathbf{2 C I}$ was collected on Bruker smart Apex 2.

Table S3. Crystal data and structure refinement for PC•2Cl.

| CCDC | 2169350 |
| :--- | :--- |
| Empirical formula | $\mathrm{C}_{46} \mathrm{H}_{48} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{8}$ |
| Formula weight | 827.76 |
| Temperature | 296.15 K |
| Wavelength | $0.71073 \AA$ |
| Crystal system | Triclinic |
| Space group | P 1 |
| Unit cell dimensions | $\mathrm{a}=11.2342(16) \AA \quad \alpha=94.218(5)^{\circ}$. |
|  | $\mathrm{b}=11.3547(19) \AA \quad \beta=105.649(5)^{\circ}$. |
|  | $\mathrm{c}=13.700(2) \AA$ |
| Volume | $1432.6(4) \AA^{3}$ |
| Z | 1 |
| Density (calculated) | $0.959 \mathrm{~g} / \mathrm{cm}^{3}$ |
| Absorption coefficient | $0.155 \mathrm{~mm}^{-1}$ |
| $\mathrm{~F}(000)$ | 436.0 |
| Crystal size | $0.12 \times 0.1 \times 0.1 \mathrm{~mm}$ |
| Radiation | $\mathrm{MoK} \alpha(\lambda=0.71073)$ |
| Theta range for data collection | $4.41 \mathrm{to} 55.002^{\circ}$ |
| Index ranges | $-14 \leq \mathrm{h} \leq 13,-14 \leq \mathrm{k} \leq 14,0 \leq 1 \leq 17$ |
| Reflections collected | 13450 |
| Independent reflections | $6451\left[\mathrm{Rint}^{\circ}=0.0562, \mathrm{Rsigma}=0.0817\right]$ |
| Data / restraints / parameters | $6451 / 51 / 559$ |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.159 |
| Final R indices [I>2sigma(I) $]$ | $\mathrm{R}_{1}=0.0984, \mathrm{wR}_{2}=0.2549$ |
| R indices (all data) | $\mathrm{R}_{1}=0.1153, \mathrm{wR}_{2}=0.2901$ |
| Largest diff. peak and hole | 0.93 and $-0.52 \mathrm{e} . \AA^{-3}$ |

## Crystal structure of $\mathrm{PM} \cdot \mathrm{Cl}(\mathrm{CCDC}: 2169353)$

Method: Single crystals, suitable for X-ray crystallography, were obtained as pale yellow block by slow vapor diffusion of isopropyl ether ( 2 mL ) into an ethanol ( 2 mL ) solution of $\mathbf{P M} \cdot \mathbf{C l}(6 \mathrm{mg})$ at room temperature for 4 days. Crystal data of $\mathbf{P M} \cdot \mathbf{C l}$ was collected on Bruker smart Apex 2.

Table S4. Crystal data and structure refinement for $\mathbf{P M} \cdot \mathbf{C l}$.

| CCDC | 2169353 |
| :--- | :--- |
| Empirical formula | $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{ClNO}_{5}$ |
| Formula weight | 447.94 |
| Temperature | 190.0 K |
| Crystal system | Orthorhombic |
| Space group | Pbcn |
| Unit cell dimensions | $\mathrm{a}=29.2816(17) \AA \quad \alpha=90^{\circ}$. |
|  | $\mathrm{b}=7.4273(4) \AA \quad \beta=90^{\circ}$. |
|  | $\mathrm{c}=20.7305(12) \AA \quad \gamma=90^{\circ}$. |
| Volume | $4508.5(4) \AA^{3}$ |
| Z | 8 |
| Density (calculated) | $1.320 \mathrm{~g} / \mathrm{cm}^{3}$ |
| Absorption coefficient | $1.166 \mathrm{~mm}^{-1}$ |
| F(000) | 1904.0 |
| Crystal size | $0.12 \times 0.1 \times 0.1 \mathrm{~mm}{ }^{3}$ |
| Radiation | $\mathrm{GaK}^{\circ}(\lambda=1.34139)$ |
| Theta range for data collection | 7.42 to $106^{\circ}$ |
| Index ranges | $-34 \leq \mathrm{h} \leq 31,-8 \leq \mathrm{k} \leq 8,-24 \leq 1 \leq 24$ |
| Reflections collected | 33827 |
| Independent reflections | $3977\left[\mathrm{Rint}^{\circ}=0.1014, \mathrm{Rsigma}=0.0610\right]$ |
| Data / restraints / parameters | $3977 / 0 / 287$ |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.035 |
| Final R indices [I>2sigma(I)] | $\mathrm{R}_{1}=0.0513, \mathrm{wR}_{2}=0.1278$ |
| R indices (all data) | $\mathrm{R}_{1}=0.0734, \mathrm{wR}_{2}=0.1438$ |
| Largest diff. peak and hole | 0.43 and $-0.42 \mathrm{e} . \AA^{-3}$ |
|  |  |

## Crystal structure of $\mathrm{PM} \cdot \mathrm{Br}$ (CCDC: 2169352)

Method: Single crystals, suitable for X-ray crystallography, were obtained as pale yellow block by slow vapor diffusion of isopropyl ether ( 1 mL ) into an ethanol ( 3 mL ) solution of $\mathbf{P M} \cdot \mathbf{B r}(10 \mathrm{mg})$ at room temperature for 4 days. Crystal data of $\mathbf{P M} \cdot \mathbf{B r}$ was collected on Bruker smart Apex 2.

Table S5. Crystal data and structure refinement for $\mathbf{P M} \cdot \mathbf{B r}$.

| CCDC | 2169352 |
| :--- | :--- |
| Empirical formula | $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{BrNO}_{4}$ |
| Formula weight | 446.33 |
| Temperature | 296.15 K |
| Crystal system | Orthorhombic |
| Space group | Pbcn |
| Unit cell dimensions | $\mathrm{a}=29.843(6) \AA \quad \alpha=90^{\circ}$. |
|  | $\mathrm{b}=7.4061(17) \AA \quad \beta=90^{\circ}$. |
|  | $\mathrm{c}=20.906(4) \AA \quad \gamma=90^{\circ}$. |
| Volume | $4620.6(17) \AA^{3}$ |
| Z | 8 |
| Density (calculated) | $1.283 \mathrm{~g} / \mathrm{cm}^{3}$ |
| Absorption coefficient | $1.804 \mathrm{~mm}^{-1}$ |
| F(000) | 1840.0 |
| Crystal size | $0.12 \times 0.1 \times 0.1 \mathrm{~mm}{ }^{3}$ |
| Radiation | $\mathrm{MoK} \alpha(\lambda=0.71073)$ |
| Theta range for data collection | 3.896 to $55.012^{\circ}$ |
| Index ranges | $-38 \leq \mathrm{h} \leq 37,-8 \leq \mathrm{k} \leq 9,-27 \leq 1 \leq 26$ |
| Reflections collected | 37756 |
| Independent reflections | $5308\left[\mathrm{Rint}^{\circ}=0.1225, \mathrm{Rsigma}=0.0938\right]$ |
| Data / restraints $/$ parameters | $5308 / 0 / 258$ |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.018 |
| Final R indices [I>2sigma(I)] | $\mathrm{R}_{1}=0.0517, \mathrm{wR}_{2}=0.1353$ |
| R indices (all data) | $\mathrm{R}_{1}=0.0723, \mathrm{wR}_{2}=0.1498$ |
| Largest diff. peak and hole | 0.64 and $-0.60 \mathrm{e} . \AA^{-3}$ |

## Crystal structure of $\mathrm{PC} \bullet \mathbf{2 B r}(\mathrm{CCDC}: 2065557$ )

Method: Single crystals, suitable for X-ray crystallography, were obtained as pale yellow block by slow vapor diffusion of diethyl ether ( 2 mL ) into a DMF ( 3 mL ) solution of $\mathbf{P C} \cdot \mathbf{2 B r}(5 \mathrm{mg})$ at room temperature for 10 days. Crystal data of $\mathbf{P C} \cdot \mathbf{2 B r}$ was collected on Bruker smart Apex 2.

Table S6. Crystal data and structure refinement for $\mathbf{P C} \mathbf{\bullet} \mathbf{2 B r}$.

| CCDC | 2065557 |
| :--- | :--- |
| Empirical formula | $\mathrm{C}_{46} \mathrm{H}_{48} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{8}$ |
| Formula weight | 916.68 |
| Temperature | 150.0 K |
| Wavelength | $0.71073 \AA$ |
| Crystal system | Triclinic |
| Space group | $\mathrm{P}-1$ |
| Unit cell dimensions | $\mathrm{a}=10.9754(6) \AA \quad \alpha=93.242(2)^{\circ}$. |
|  | $\mathrm{b}=11.4978(6) \AA \quad \beta=105.007(2)^{\circ}$. |
|  | $\mathrm{c}=12.5999(6) \AA \quad \gamma=115.658(2)^{\circ}$. |
| Volume | $1358.12(12) \AA^{3}$ |
| Z | 1 |
| Density (calculated) | $1.121 \mathrm{~g} / \mathrm{cm}^{3}$ |
| Absorption coefficient | $1.536 \mathrm{~mm}^{-1}$ |
| $\mathrm{~F}(000)$ | 472.0 |
| Crystal size | $0.17 \times 0.16 \times 0.15 \mathrm{~mm}$ |
| Radiation | $\mathrm{MoK} \alpha(\lambda=0.71073)$ |
| Theta range for data collection | 4.006 to $55.024^{\circ}$ |
| Index ranges | $-14 \leq \mathrm{h} \leq 14,-14 \leq \mathrm{k} \leq 14,-16 \leq 1 \leq 16$ |
| Reflections collected | 62345 |
| Independent reflections | $6205\left[\mathrm{Rint}^{\circ}=0.0490, \mathrm{Rsigma}=0.0346\right]$ |
| Data / restraints / parameters | $6205 / 0 / 267$ |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.147 |
| Final R indices [I>2sigma(I) $]$ | $\mathrm{R}_{1}=0.0539, \mathrm{wR}_{2}=0.1439$ |
| R indices (all data) | $\mathrm{R}_{1}=0.0552, \mathrm{wR}_{2}=0.1446$ |
| Largest diff. peak and hole | 0.55 and $-0.45 \mathrm{e} . \AA^{-3}$ |

## Crystal structure of PM (CCDC: 2169354)

Method: Single crystals, suitable for X-ray crystallography, were obtained as colorless block by slow vapor diffusion of hexane ( 1 mL ) into a dichloromethane ( 2 mL ) solution of $\mathbf{P M}(8 \mathrm{mg})$ at room temperature for 3 days. Crystal data of $\mathbf{P M}$ was collected on Bruker smart Apex 2.

Table S7. Crystal data and structure refinement for PM.

| CCDC | 2169354 |
| :--- | :--- |
| Empirical formula | $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{4}$ |
| Formula weight | 351.39 |
| Temperature | $173(2) \mathrm{K}$ |
| Wavelength | $0.71073 \AA$ |
| Crystal system | Monoclinic |
| Space group | $\mathrm{P} 2_{1} / \mathrm{n}$ |
| Unit cell dimensions | $\mathrm{a}=7.434(2) \AA \quad \alpha=90^{\circ}$. |
|  | $\mathrm{b}=8.594(3) \AA \quad \beta=92.767(5)^{\circ}$. |
|  | $\mathrm{c}=27.816(8) \AA \quad \gamma=90^{\circ}$. |
| Volume | $1775.1(9) \AA^{3}$ |
| Z | 4 |
| Density (calculated) | $1.315 \mathrm{Mg} / \mathrm{m}^{3}$ |
| Absorption coefficient | $0.091 \mathrm{~mm} \mathrm{~m}^{-1}$ |
| $\mathrm{~F}(000)$ | 744 |
| Crystal size | $0.190 \mathrm{x} 0.170 \mathrm{x} 0.110 \mathrm{~mm}^{3}$ |
| Theta range for data collection | 2.481 to $25.009^{\circ}$ |
| Index ranges | $-8<=\mathrm{h}<=8,-10<=\mathrm{k}<=9,-32<=1<=33$ |
| Reflections collected | 12875 |
| Independent reflections | $3124[\mathrm{R}($ int $)=0.0510]$ |
| Completeness to theta $=25.009^{\circ}$ | $99.6 \%$ |
| Refinement method | $\mathrm{Full}-\mathrm{matrix}$ least-squares on $\mathrm{F}^{2}$ |
| Data / restraints / parameters | $3124 / 0 / 239$ |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.060 |
| Final R indices [I>2sigma(I) $]$ | $\mathrm{R}_{1}=0.0449, \mathrm{wR}_{2}=0.1204$ |
| R indices (all data) | $\mathrm{R}_{1}=0.0547, \mathrm{wR}_{2}=0.1291$ |
| Extinction coefficient | $\mathrm{n} / \mathrm{a}$ |
| Largest diff. peak and hole | 0.251 and $-0.293 \mathrm{e} . \AA^{-3}$ |

