Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting information

Fig. S1 SEM images of BaTaO₂N prepared using nitridation temperatures and durations of (a) 1073 K/15 h, (b) 1173 K/2 h, (c) 1173 K/10 h, and 1273 K/0.5 h.

Fig. S2 High-resolution transmission electron spectroscopy images (HR-TEM) of (a) $a-Ta_2O_5$ and (b) $BaTaO_2N$. $BaTaO_2N$ was prepared from a mixture of $BaCO_3$ and $a-Ta_2O_5$ by NH₃ nitridation at 1123 K for 5 h.

(a)

Fig. S3 Effects of nitridation time on the photocatalytic activity of BaTaO₂N during the water splitting reaction. The BaTaO₂N was prepared by nitridation at 1173 K for varying durations and was loaded with 4 wt% Rh, 0.5 wt% Cr₂O₃ and 0.3 wt% IrO₂ as cocatalysts. Reaction conditions: lamp source; 300 W Xe lamp (λ >420 nm), reaction temperature; 288 K, background pressure; Ar at 5 kPa.

Fig. S4 Effects of nitridation time on the photocatalytic activity of BaTaO₂N during the water splitting reaction. The BaTaO₂N was prepared by nitridation at 1073 K for varying durations and was loaded with 4 wt% Rh, 0.5 wt% Cr₂O₃ and 0.3 wt% IrO₂ as cocatalysts. Reaction conditions: lamp source; 300 W Xe lamp (λ >420 nm), reaction temperature; 288 K, background pressure; Ar at 5 kPa.

Fig. S5 Three-dimensional representations of photocatalytic activity as reflected in (a) H₂ and (b) O₂ evolution as functions of nitridation temperature and duration. The BaTaO₂N was prepared by nitridation at 1073 to 1273 K for 0.5 to 20 h and was loaded with 4 wt% Rh, 0.5 wt% Cr₂O₃ and 0.3 wt% IrO₂ as cocatalysts. Reaction conditions: lamp source; 300 W Xe lamp (λ >420 nm), reaction temperature; 288 K, background pressure; Ar at 5 kPa.

Fig. S6 Effects of the background Ar gas pressure on the photocatalytic activity of Rh/Cr₂O₃/IrO₂-loaded BaTaO₂N. The BaTaO₂N was prepared by nitridation at 1123 K for 5 h and was loaded with 2 wt% Rh, 1 wt% Cr₂O₃ and 0.3 wt% IrO₂ as cocatalysts. Reaction conditions: lamp source; 300 W Xe lamp (λ >420 nm), reaction temperature; 288 K.

Fig.S7 Changes in the amounts of H₂ and O₂ in the gas phase during light irradiation and dark(light-off). The BaTaO₂N was prepared by nitridation at 1123 K for 5 h and was loaded with 2 wt% Rh, 1 wt% Cr₂O₃ and 0.3 wt% IrO₂ as cocatalysts. Reaction conditions: lamp source; 300 W Xe lamp (λ >420 nm), reaction temperature; 288 K, background pressure; Ar at 5 kPa.

Fig. S8 Effects of the extent of Rh loading on the photocatalytic activity of Rh/Cr₂O₃/IrO₂-loaded BaTaO₂N. The BaTaO₂N was prepared by nitridation at 1123 K for 5 h and was loaded with 1-4 wt% Rh, 0.5 wt% Cr₂O₃ and 0.3 wt% IrO₂ as cocatalysts. Reaction conditions: lamp source; 300 W Xe lamp (λ >420 nm), reaction temperature; 288 K, background pressure; Ar at 5 kPa.

Fig. S9 The effects of the Rh/Cr ratio on the photocatalytic activity of Rh/Cr₂O₃/IrO₂-loaded BaTaO₂N. The BaTaO₂N was prepared by nitridation at 1123 K for 5 h and was loaded with 2 or 4 wt% Rh, 0.5 or 1.0 wt% Cr₂O₃ and 0.3 wt% IrO₂ as cocatalysts. Reaction conditions: lamp source; 300 W Xe lamp (λ >420 nm), reaction temperature; 288 K, background pressure; Ar at 5 kPa.

Fig. S10 Water splitting reaction on (a) Rh/Cr₂O₃-loaded and (b) IrO₂-loaded BaTaO₂N. The BaTaO₂N was prepared by nitridation at 1123 K for 5 h and was loaded with 2 wt% Rh, 1 wt% Cr₂O₃ and 0.3 wt% IrO₂ as cocatalysts. Reaction conditions: lamp source; 300 W Xe lamp (λ >420 nm), reaction temperature; 288 K, background pressure; Ar at 5 kPa.

Fig. S11 Variations in the photocatalytic activity of Ru/Cr₂O₃/IrO₂-loaded BaTaO₂N with changes in Ru loading. The BaTaO₂N was prepared by nitridation at 1123 K for 5 h and was loaded with 1-4 wt% Ru, 1 wt% Cr₂O₃ and 0.3 wt% IrO₂ as cocatalysts. Reaction conditions: lamp source; 300 W Xe lamp (λ >420 nm), reaction temperature; 288 K, background pressure; Ar at 5 kPa.

Fig. S12 Annular dark-field STEM images and STEM-EDS elemental maps of $Ru/Cr_2O_3/IrO_2$ -BaTaO₂N. The BaTaO₂N was prepared by nitridation at 1123 K for 5 h and was loaded with $Ru/Cr_2O_3/IrO_2$ at 2/1/0.3 wt%.

Fig. S13 A high resolution transmission electron spectroscopy (HR-TEM) image of BaTaO₂N and its EDS mapping. Color: magenta, blue and green show Ru, Cr and Ta, respectively.

Fig. S14 (a) Evolution of gaseous products during the water splitting reaction on Rh-loaded BaTaO₂N in an aqueous K₂CrO₄ solution and (b) the effects of pH on the photocatalytic activity. The BaTaO₂N was prepared by nitridation at 1123 K for 5 h and was loaded with 2 wt% Rh. Reaction conditions: 0.22 mM aqueous K₂CrO₄ solution, pH; adjusted by adding NaOH and HCl, lamp source; 300 W Xe lamp (λ >420 nm), reaction temperature; 288 K, background pressure; Ar at 5 kPa.

(a)

Fig. S15 (a) Schematic representation of the possible reactions involved in BaTaO₂N formation from a mixture of BaCO₃ and a-Ta₂O₅ in a flow of NH₃ and (b) the photocatalytic activities during the water splitting reaction of BaTaO₂N synthesized via the various paths. Reaction path (1): the oxide precursor BaTaO_x was first prepared by the reaction of BaCO₃ with a-Ta₂O₅ in air at 1173 K for 1 h. The XRD pattern for the product showed broad peaks attributed to amorphous Ba₅Ta₄O₁₅. An NH₃-based nitridation was subsequently carried out at 1173 K for 2 h to obtain BaTaO₂N. Reaction path (2): the oxynitride precursor BaTaO_x was first prepared by the represented by the pre-reaction of BaCO₃ with a-Ta₂O₅ in a flow of NH₃ at 993 K for 1 h, followed

by further NH₃ nitridation at 1173 K for 1 h. Reaction path (3): TaON was prepared from a-Ta₂O₅ by nitridation in a flow of NH₃ (flow rate of 40 mL min⁻¹) at 1173 K for 1 h. The reaction of BaCO₃ with TaON was then performed in NH₃ at 1173 K for 1 h. Reaction path (4): Ta₃N₅ was prepared from a-Ta₂O₅ by nitridation in a flow of NH₃ (flow rate of 70 mL min⁻¹) at 1173 K for 3 h. The reaction of Ta₃N₅ with BaCO₃ to produce BaTaO₂N was then carried out in a N₂ atmosphere at 1173 K for 1 h. The activity during the water splitting reaction was examined after loading IrO₂ (0.3 wt%), Cr₂O₃ (0.5 wt%) and Rh (4 wt%) as cocatalysts. Reaction conditions; lamp source; 300 W Xe lamp, wavelength of illuminated light; λ >420 nm, reaction temperature; 288 K, background pressure; Ar at 5 kPa.

Fig. S16 Effects of oxidation on the activity of BaTaO₂N deactivated by prolonged NH₃ nitridation. \Diamond , \square : Before oxidation, \blacklozenge , \blacksquare : After oxidation. The BaTaO₂N was prepared by nitridation in a flow of NH₃ at 1123 K for 15 h. Oxidation was carried out by exposure to N₂ containing O₂(100 ppm) at 823 K for 2 h. Cocatalysts: Rh at 4 wt%, Cr₂O₃ at 1.0 wt% and IrO₂ at 0.3 wt%. Reaction conditions: lamp source; 300 W Xe lamp, wavelength of illuminated light; λ >420 nm, reaction temperature; 288 K, background pressure; Ar at 5 kPa.

Fig. S17 Ta 4f X-ray photoelectron spectra obtained for BaTaO₂N prepared at 1123 K for (a) 5 and (b) 20 h. The Ta 4f peaks showed very complicated shapes that could be assigned to Ta $4f_{7/2}$ and Ta_{5/2} contributions. Since both the 5 and 20 h specimens contained small amounts of Ta₃N₅, the contribution of this phase to the Ta 4f signals was considered. Curve fitting of the Ta 4f signals was difficult in the case of BaTaO₂N and so a precursor oxynitride such as BaTaO_xN_y was assumed to be present in addition to BaTaO₂N. The solid lines indicate that a combination of Ta 4f signals due to BaTaO₂N, BaTaO_xN_y and Ta₃N₅ was in good agreement with the experimental signal shape in the binding energy region higher than 25 eV, below which contributions by Ta³⁺ were indicated. The Ta 4f_{7/2} (Ta 4f_{5/2}) binding energy values were 25.7±0.1 eV (27.6±0.1 eV) for BaTaO₂N, 27.2±0.1 eV (29.1±0.1 eV) for BaTaO_xN_y, 24.5±0.05 eV (26.4±0.05 eV) for Ta₃N₅ and 23.8±0.2 eV (25.7±0.2 eV) for Ta³⁺.

Table S1 The proportions of various components identified in $BaTaO_2N$ samples nitrided for 3, 5 and 20 h.

Nitridation time / h	Ta ⁵⁺ (BaTaO₂N)	Ta ⁵⁺ (BaTaO _x N _y)	Ta^{5+} (Ta_3N_5)	Ta ³⁺
3	0.30	0.48	0.13	0.10
5	0.35	0.39	0.13	0.13
20	0.43	0.20	0.11	0.27

With increasing nitridation duration, the proportion of the Ta 4f signal due to $BaTaO_xN_y$ decreased while that related to $BaTaO_2N$ increased. This change was consistent with the assumption that $BaTaO_xN_y$ was present. It should be noted that the proportion of Ta^{3+} was much higher in the $BaTaO_2N$ specimen nitrided for 20 h compared with the 5 h sample.