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Supplementary Note 1

Firstly, a correlation analysis is conducted, and 24 features out of 48 are eliminated due to their high 
correlation coefficient (Pearson coefficient >0.95, see Supplementary Material Fig. S2 for details). Next, 
a recursive feature elimination (RFE) is performed on the remaining 24 features. The initial data is split 
into training set and test set, where instead of randomly selecting four samples, we chose all the four 
ternary systems as test set, which owing to their ternary nature are an indication of the surrogate model’s 
capability to predict the Br&Hcj of multi-doping systems. We adopt average leave-one-out cross-
validation root-mean-squared-error on the training set (averaged out over Br@20℃ and Br@150℃, 
hereafter referred to as LOOCV RMSE error, or LOOCV error) as elimination criteria, against which 
features are retained/eliminated in a greedy fashion. In the meantime, average RMSE error on the test set 
(hereafter referred to as test error) is monitored and serves as an ‘early stopping’ mechanism to prevent 
overfitting to feature subset in RFE process. Starting from 24 features, all possible eliminations are 
considered, and the “worst” feature, namely, the feature that, upon elimination, gives rise to the best 
model with the lowest LOOCV error, is eliminated. This is done recursively till there are only two 
features left.

The RFE process is carried out individually for each ML algorithm, as illustrated using SVR as an 
example below. Fig. S3 shows the LOOCV error for both Br@20℃ and Br@150℃, where the results 
obtained with Approach 1 is also shown (Compo.) for comparison. LOOCV error of the best model, with 
the “worst” feature eliminated, as highlighted with blue downward (Br@20℃) and upward (Br@150℃) 
triangles, decreases first when the # features is reduced, and then increases upon further reduction in the 
# features. The initial decrease is attributed to the elimination of irrelevant/redundant features that 
contribute little or none to the model accuracy, and rather serve as “noises” that compromise it, the 
elimination of which hence improves the model, and further elimination of the remaining features that 
do contribute to the model leads to increased error. The evolution of LOOCV error and test error, as the 
features are recursively eliminated as described above, is shown in Fig. S3b. LOOCV error reaches a 
minimum as the # features is reduced to 4, however, test error rises appreciably as the # features is 
reduced to below 8. Hence, we consider the optimal # features to be 6, where a balance of LOOCV error 
and test error is achieved. The LOOCV error of the 6-feature set generated with RFE, is significantly 
lower than that using compositions (Compo.), suggesting that domain-knowledge-based approach is 
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more advantageous than composition-based approach here. The selected features are shown in Table. S4. 
Based on the filtered features obtained with RFE, the LOOCV error on the training set for Br@20℃ and 
Br@150℃ are plotted in Fig. S3c for the afore-mentioned six machine learning techniques. SVR 
achieves the lowest LOOCV error for both Br@20℃ and Br@150℃, and is therefore chosen as the 
machine learning framework for building our surrogate model. 

Supplementary Note 2
EI is defined as 

𝐸𝐼(𝜇, 𝜎) = {𝜎[𝜙(𝑍) + Φ(𝑍)𝑍],    𝜎 > 0  
0,                  𝜎 = 0  �

Where Z is defined as 

𝑍(𝜇, 𝜎) = {(𝜇 ‒ 𝜇 ∗ )/𝜎,    𝜎 > 0  
0,            𝜎 = 0  �

Here  is the maximum value observed so far in the training set,  and  are the standard normal 𝜇 ∗ 𝜙(𝑍) Φ(𝑍)
distribution functions and normal cumulative distribution functions, respectively. As such, EI balances 
the ‘exploration’ aspect of a search strategy: , and ‘exploitation’ aspect: . The evaluation 𝜎𝜙(𝑍) 𝜎Φ(𝑍)𝑍

of Z (Z-score of ) requires a reference value, , taken as the maximum value observed so far in the 𝜇 𝜇 ∗

training set. Note that EI values are generally low when Z < 0 ( ) (unless  is notoriously large, 𝜇 < 𝜇 ∗ 𝜎

which is not the case here). Take the optimization of Br@150℃ as an example,  turns out to be very 𝜇 ∗

high (10.93 KGs), and as such, due to the cost-performance relationship of Nd-Fe-B (in general, lower 
cost compositions demonstrate lower performance) investigated in this work, under a cost constraint of, 
for example, C2 (~10% reduced cost) and C3 (~20% reduced cost), the trained surrogate model would 

predict values ( ) of all allowed compositions in our target space (Table 1) to be lower than  (10.93 𝜇 𝜇 ∗

KGs), and hence, very low EI. For example, the predicted range ( ) and EI of the three compositions 𝜇 ± 𝜎

in iteration 1 are tabulated below. The E values of the composition 1: C2 and 1:C3 are nearly zero, as the 

predicted  is significantly lower than  (10.93 KGs), and this is actually the case for all the allowed 𝜇 𝜇 ∗

compositions in the target space. The near-zero values of EI defeat the purpose of using EI. Although 

this could be remedied by defining different  for different cost constraint, the choice of  is arbitrary. 𝜇 ∗ 𝜇 ∗

We therefore turn to a simpler acquisition function, UCB, defined as , with k=1. Here k is a pre-𝜇 + 𝑘𝜎

determined term that determines the trade-off between ‘exploration’ and ‘exploitation’ aspect of the 
search strategy. As such, although differing in their functional form, both EI and UCB trades-off 
‘exploration’ and ‘exploitation’, and could be used to guide experimental design. Note that UCB has also 
proven successful in Bayesian search (Attia. et al., Nature 578, 397–402 (2020) 1). We also note that for 
many practical problems, the choice of the surrogate model matters more than the acquisition function, 
and actually the performance of EI and UCB has been shown to be close in terms of the rate at which 
‘high-performance’ materials are successfully ‘mined’ (Liang et al., npj Computational Materials (2021) 
7:188 2).

Iteration Predicted Br@150℃ (KGs) EI (KGs)

1:C1 11.24±0.37 0.35

1:C2 9.81±0.77 0.03

1:C3 9.62±0.76 0.01



Supplementary Note 3

We added a wiggle room to the cost constraints to promote exploration. This wiggle room was set 
to be 2% for Stage 1 and 1% for Stage 2. For example, a ~20% cost reduction level with a wiggle room 
of 2% means that the cost reduction is required to be at least 18%.

Supplementary Note 4

The temperature coefficient of Br (αBr) and Hcj (βHcj) is calculated as the percentage change in Br (or 
Hcj) per ℃, as compared to the value at 20℃, as shown below. 

𝛼𝐵𝑟|𝑇 =
𝐵𝑟|𝑇 ‒ 𝐵𝑟|20℃

𝑇 ‒ 20
∗ 100

𝛽𝐻𝑐𝑗|𝑇 =
𝐻𝑐𝑗|𝑇 ‒ 𝐻𝑐𝑗|20℃

𝑇 ‒ 20
∗ 100

Where the relative change is multiplied by 100 and hence converted to percentage reduction. As is shown 
in Fig. S7, Br and Hcj do not usually vary linearly with T, and therefore αBr and βHcj are temperature-
dependent, and are usually specified at a given temperature, hence αBr|T and βHcj|T. In our case, both αBr 
and βHcj are calculated at 150℃. For example, αBr of pristine Nd-Fe-B at 150℃ is -0.133, meaning that 
Br shows an average reduction of 0.133%/℃ as temperature is increased from 20℃ to 150℃.

Table. S1 Composition (main phase wt%) and magnetic properties (Br, Hcj) of the initial dataset comprising of 24 

samples.

Sample La Ce Y Co Ni Br: 20 Br: 80 Br: 150 Hcj: 20 Hcj: 150 Cost Relative cost

1 0 0 0 0 0 13.24 12.38 10.93 15.48 3.61 236.331 0

2 0 0 0 18.61 0 12.81 12.1 11.33 14.68 2.44 306.891 0.299

3 0 5.77 0 0 0 12.5 11.36 9.862 11.78 2.59 182.181 -0.229

4 0 5.32 0 18.05 0 11.98 11.42 10.6 12.98 1.82 252.741 0.069

5 0 11.86 0 0 0 11.34 10.41 8.537 5.97 0.441 128.031 -0.458

6 4.37 0 0 17.93 0 12.39 11.77 10.99 7.705 2.12 253.266 0.072

7 0 0 0 36.61 0 11.52 10.16 7.73 0.243 0.084 377.451 0.597

8 0 11.2 0 18.74 0 10.9 10.25 9.31 4.96 0.502 198.591 -0.16

9 4.5 0 0 0 0 12.09 11 9.73 12.72 2.85 182.706 -0.227

10 4.47 0 0 36.99 0 11.03 10.59 9.98 11.3 3.09 323.826 0.37

11 7.93 0 0 16.54 0 12.01 11.44 10.67 3.56 1.27 199.641 -0.155

12 9.2 0 0 30.54 0 11.34 10.83 10.2 3.86 0.932 270.201 0.143

13 0 0 0 0 1.75 12.21 11.4 10.18 17.23 3.86 240.023 0.016

14 0 5.71 0 0 1.91 11.83 10.96 10.33 10.05 2.81 185.873 -0.214

15 0 0 4.55 0 0 12.21 11.35 10.1 13.35 3.32 210.331 -0.11

16 3.61 0 2.66 0 0 9.76 8.82 7.29 3.5 0.742 169.706 -0.282

17 0 5.08 2.38 0 0 12.1 11.05 9.58 11.35 2.35 169.181 -0.284

18 0 0 4.9 9.11 0 11.75 11.11 10.22 14.57 3.51 245.611 0.039

19 0 0 4.56 0 1.6 10.66 9.91 8.85 12.72 2.8 214.023 -0.094

20 4.37 6.13 0 0 0 10.37 9.525 7.081 3.093 0.162 128.556 -0.456

21 3.7 0 2.33 8.66 0 10.63 10.01 9.21 5.062 1.96 204.986 -0.133

22 0 4.99 2.38 9.15 0 11.81 11.11 10.11 11.62 2.13 204.461 -0.135

23 4.4 5.85 0 9.26 0 11.24 10.54 9.63 6.62 1.92 163.836 -0.307

24 4.63 6 0 0 1.81 10.78 9.7 8.3 3.589 0.913 132.248 -0.44



Table. S2 Prices of the doping species in unit of RMB/KG. The values were retrieved from 3 on 2021/9/1.

Element Nd/Pr La Ce Y Fe Co Ni

Price (RMB/KG) 750 35 28 230 8 400 150

Table. S3 Atomic features for domain-knowledge-based fingerprinting.

Atomic feature La Ce Y Co Ni

Atomic number ZR (ZT) 57 58 39 27 28

Atomic radii rR (rT) 180 163 163 111 110

Electronegativity χR (χT)  1.10 1.12 1.22 1.88 1.91

Atomic mass mR (mT) 138.91 140.12 88.91 58.93 58.69

Valence electron number VENR (VENT) 3 4 3 9 10

Spin angular moment S4f  (S3d)  0.0  0.5  0.0 1.5 1.0

Orbital angular moment L4f  (L3d)  0.0  3.0  0.0 3.0 3.0

Ionization potential IPR (IPT)  538.09  534.39 599.87 760.4 737.14

Density ρR (ρT) 6.146 6.689 4.472 8.9 8.908

Melting point TmR (TmT) 1193 1068 1799 1768 1728

Boiling point TbR (TbT) 3743 3633 3609 3200 3186

Enthalpy of fusion EfR (EfT) 6.2 5.5 11.4 16.2 17.2

Enthalpy of vaporization EvR (EvT) 400 350 380 375 378

Enthalpy of atomization EaR (EaT) 431 423 425 426 431

Curie Temperature TcR (TcT) 530 424 565 1388 628

Saturation magnetization μR (μT) 13.8 11.7 14.1 1.72 0.60

Table. S4 Selected feature with the six different ML algorithms, and the corresponding LOOCV error (KGs) in this 

work.

Estimator Selected Features Br@20℃: CV Br@150℃: CV

GP ['IP
RT

', 'x
RT

', 'Ev
R
', 'Ef

RT
'] 0.6 0.83

SVR ['Tc
T
', 'Tc

RT
', 'IP

RT
', 'μ

RT
', 'Ev

R
', 'IP

T
' ] 0.39 0.61

Ridge  ['Tc
RT

', 'IP
T
', 'Ev

R
', 'Ea

RT
'] 0.50 0.89

KNN ['L4f
R
', 'Ea

RT
', 'IP

T
', 'm

R
', 'Ef

R
'] 0.62 0.83

ANN ['μ
T
', 'μ

R
', 'μ

RT
', 'r

R
', 'm

R
', 'IP

T
'] 0.57 1.07

DT ['L4f
R
', 'Tm

RT
', 'Tc

RT
'] 0.74 0.85

Table. S5 Recommended compositions and the corresponding performance during Stage 1, aimed at maximizing 

Br@150℃. Performance of the pristine Nd-Fe-B (Iteration 0) is also included as benchmark.

Composition Br@20℃ (KGs) Br@150℃ (KGs)

Iteration Main phase wt% Predicted Actual Predicted Actual Relative Cost

0 Pristine Nd-Fe-B --- 13.24 --- 10.93  ---



1:C1 Ce3Co7 12.85±0.30 12.66 11.24±0.37 10.78 0%

1:C2 La6Co10Ni3 11.45±0.64 11.48 9.81±0.77 10.15 -11.7%

1:C3 La6Ce2Co10Ni3 11.28±0.64 10.43 9.62±0.76 8.99 -19.6%

2:C1 La3Co9Ni0.5 12.39±0.22 12.45 11.03±0.28 10.78 0%

2:C2 La5Co10Ni1.5 11.96±0.25 12.15 10.72±0.33 10.55 -8.4%

2:C3 La7Co10Ni2 11.78±0.29 12.00 10.36±0.37 10.51 -18.5%

Table. S6 Recommended compositions and the corresponding performance during Stage 2, aimed at maximizing 

Br@80℃*Hcj@150℃. Performance of the pristine Nd-Fe-B (Iteration 0) is also included as a baseline for 

comparison.

Composition Br@80℃ (KGs) Hcj@150℃ (KOe) MBr&Hcj (KGs*KOe)

Iteration Main phase wt% Predicted Actual Predicted Actual Predicted Actual Relative Cost

0 Pristine Nd-Fe-B --- 12.38 --- 3.61 --- 44.69 --- 

3:C1 Ce1Co1 12.04±0.29 11.99 3.76±0.37 4.31 45.33±5.66 51.68 -2.4%

3:C2 La1Ce1Ni0.25 11.85±0.24 11.80 3.73±0.35 3.89 44.18±4.93 45.90 -9.2%

3:C3 Ce5Y0.5Co1 11.45±0.15 11.34 3.15±0.30 3.27 36.04±3.68 37.08 -19.7%

Table. S7 Composition (nominal wt% and main phase) and the wt% of Nd/Pr replaced for all the compositions 

recommended in the iterative design process.

Iteration Main phase wt% Nominal wt% % Nd/Pr 

replaced1:C1 Ce3Co7 Ce4.0Co7.2 13.0%

1:C2 La6Co10Ni3 La10.5Co10.2Ni4.4 34.1%

1:C3 La6Ce2Co10Ni3 La10.5Ce2.6Co10.2Ni4.4 42.5%

2:C1 La3Co9Ni0.5 La5.3Co9.2Ni0.7 17.2%

2:C2 La5Co10Ni1.5 La8.8Co10.2Ni2.2 28.6%

2:C3 La7Co10Ni2 La12.3Co10.2Ni3.0 39.9%

3:C1 Ce1Co1 Ce1.33Co1.03 4.3%

3:C2 La1Ce1Ni0.25 La1.76Ce1.33Ni0.37 10.0%

3:C3 Ce5Y0.5Co1 Ce6.62Y0.53Co1.03 23.2%



Fig. S1 Variation of main phase wt% vs. nominal wt% for the five doping species, based on the augmented dataset 

(24 samples in the initial data, plus 9 new compositions). A linear fit renders a slope (intercept is forced to be 0), 

representing the average ratio of main phase wt% and nominal wt%. 

Fig. S2 Heatmap showing the Pearson’s correlation coefficients among the atomic features: (a) before and (b) after 

the filtering process. The number of features is reduced from 48 to 24, with a cutoff of 0.95 for feature elimination.



Fig. S3 (a) Variation of LOOCV error and test error with # features during the RFE process for SVR, (b) Bar-plot 

showing LOOCV error and test error for composition-based approach (Compo.) and domain-knowledge-based 

approach during the RFE process for SVR, (c) LOOCV error on the train/test set for Br@20℃ and Br@150℃, 

evaluated for six different machine learning techniques. The salmon-colored arrow in (a) and (b) indicates the # 

features chosen (# features = 6) for SVR.

Fig. S4 (a) Variation of LOOCV error and test error with # features during the RFE process for SVR, (b) Bar-plot 

showing LOOCV error and test error for composition-based approach (Compo.) and domain-knowledge-based 

approach during the RFE process for SVR, (c) LOOCV error on the train/test set for Br@80℃ and Hcj@150℃, 

evaluated for six different machine learning techniques. The salmon-colored arrow in (a) and (b) indicates the # 



features chosen (# features = 5) for SVR. The results are shown for Stage 2.

Fig. S5 Demagnetizing curves (20℃, 80℃, and 150℃) of the first two compositions recommended in iteration 3: 

(a) 3: C1 (Ce1Co1), (b) 3: C2 (La1Ce1Ni0.25).

Fig. S6 Recommended compositions and their corresponding (a) Br@20℃, (b) Hcj@20℃, (c) MBr&Hcj in iteration 

3. (d) Contour plot showing the performance of recommended compositions as compared to initial dataset (with 

pristine Nd-Fe-B highlighted as cross), with symbols colored based on the relative cost of the corresponding 

compositions w.r.t. pristine Nd-Fe-B. The dashed gray contour lines represent the variation of MBr&Hcj. (e) Variation 

of GBr&Hcj over iterations, with the initial dataset shown as iteration 0. In (a)-(c) model-predicted range (μ±σ) is 

shown as vertical bars for iteration 3, similar to that in Fig. 5. Note that MBr&Hcj is defined as Br@20℃*Hcj@20℃ 

here to reflect the overall performance at RT, and GBr&Hcj defined as MBr&Hcj/cost.



Fig. S7 Temperature dependence of (a) Br, (b) Hcj for selected compositions with positive performance-cost ratio 

gain ΔGBr&Hcj, along with that of pristine Nd-Fe-B. Costs of the selected compositions are also shown in the inset 

bar plot.

Fig. S8 Variation of Ni wt% and uncertainty for the recommended compositions throughout the iterative design 

process. Ni wt% is normalized w.r.t. that of the highest Ni wt% in the initial dataset, and hence a value greater than 

1 indicates extrapolation in terms of Ni wt% during the iterative design. Uncertainty is calculated as predicted 

uncertainty/predicated mean, and calculated based on Br@150℃ for iteration 1-2 and Br@80℃ for iteration 3. In 

this context, a high Ni wt% along with high uncertainty indicate an ‘explorative’ nature (iteration 1), and the opposite 

indicates an ‘exploitative’ nature (iteration 2-3).



Fig. S9 Variation of (a) Br@20℃, (b) Br@80℃, (c) Hcj@20℃, (d) Hcj@150℃ with wt% of La/Ce/Y as predicted 

by the model (Stage 2).

Fig. S10 Variation of (a) Br@20℃, (b) Hcj@150℃, (c) Br@150℃, (d) Hcj@150℃ with the # iteration during the 

adaptive learning process.
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