Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Achieving ultralong directional liquid transportation spontaneously with a high velocity

Qiankai Liu^{a, &}, Jie Zhang^{a, &}, Pengcheng Sun^{a, b, &}, Jianping Wang^a, Wei Zhao^a,

Guolong Zhao^a, Ni Chen^a, Yinfei Yang^a, Liang Li^a, Ning He^a, Zuankai Wang^{c,*},

Xiuqing Hao^{a, *}

^aCollege of Mechanical and Electrical Engineering, Nanjing University of Aeronautics &

Astronautics, Nanjing, 210016, China

^b Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077,

China

^c Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong,

999077, China.

[&] These authors are co-first authors.

*Corresponding Author

E-mail address: xqhao@nuaa.edu.cn (X. Hao), zk.wang@polyu.edu.hk (Z. Wang).

Fig. S1 Schematics illustrating of the fabrication process of CWP

Table S1 Laser	parameters for the	preparation of differe	nt wetting gradient	backgrounds $(k = 0, $
			00	

		,			
Laser parameters	Scanning speed (mm/s)	Hatching	Power	Frequency	Hatching
		loop	(W)	(kHz)	distance
					(µm)
Value	200	Vertical:1;	16	20	80
$(k = 0^{\circ} \text{ mm}^{-1})$		Horizontal:1;			
	200, 250, 300, 350,				
Value	400, 450, 500, 550,				
$(k = 0.20^{\circ} \text{ mm}^{-1})$	600, 650, 700, 750,	Vertical:1;	16	20	80
	800, 850, 900, 950,	Horizontal:1;			
	1000, 1050, 1100,				
	1150				
** 1	200, 300, 400, 500,				
Value	600, 700, 800, 900,	** . * * *		•	
$(k = 0.30^{\circ} \text{ mm}^{-1})$	1000, 1100, 1200,	Vertical:1;	16	20	80
	1300, 1400, 1500,	Horizontal:1;			
	1600, 1700, 1800,				
	1900, 2000, 2100				
** 1	200, 400, 600, 800,				
Value	1000, 1200, 1400,			• •	
$(k = 0.35^{\circ} \text{ mm}^{-1})$	1600, 1800, 2000,	Vertical:1;	16	20	80
	2200, 2400, 2600,	Horizontal:1;			
	2800, 3000, 3200,				
	3400, 3600, 3800,				
	4000				

0.20, 0.30 and 0.35° mm⁻¹)

Table S2 Laser parameters for the preparation of all super-hydrophilic channels

Fig. S2 The relationship between surface structure and wettability of backgrounds, detailed drawings of SEM images, and the sizes and surface roughness of backgrounds fabricated at different laser scanning speeds. (a) The relationship between surface structure and wettability of backgrounds fabricated at different laser scanning speeds. (b) SEM images of the background which were fabricated at 200 mm s⁻¹. (c) SEM images of the rough surface. (d) The effect of laser scanning speeds on surface roughness, where Sq and Sa are the standard deviation and the mean of height of surface structures, respectively. (e) The sizes of surface profiles which were prepared at 200, 1000, and 8000 mm s⁻¹ and the size of the surface profile of the rough surface.

Fig. S3 The hysteresis resistance force F_H and the wetting gradient force F_W act at boundaries. (a) Force analysis of a drop on smooth boundaries without rounded corners. (b) Force analysis of a drop on rounded corners with radius R_I . (c) Force analysis of a drop on the wetting gradient background.

fabricated at different laser scanning speeds						
Laser scanning speed (mm s ⁻¹)	θ (°)	α (°)				
200	150.16	5.61				
300	149.16	15.51				
400	146.86	25.43				
500	139.06	56.43				
600	134.06	Pinning				
700	133.5	Pinning				
2000	117.18	Pinning				
3000	114.18	Pinning				
4000	111.86	Pinning				
8000	106.94	Pinning				
Rough surface	91.46	Pinning				

Table S3 Contact angles θ and sliding angles α of backgrounds

Fig. S4 Detailed design drawing of CWPs with different average wetting gradients. The CWP with $k = 0^{\circ} \text{ mm}^{-1}$ is composed of a super-hydrophilic channel and a uniform wetting background. The CWP with $k > 0^{\circ} \text{ mm}^{-1}$ is composed of a super-hydrophilic channel and a gradient hydrophobic background consisting of 20 cells. The geometrical parameters of all super-hydrophilic channels are the same.

Geometric parameters	Length $L_l, L_c, L \text{ (mm)}$	Wedge angle	Transition angle β_2 (°)	Width w ₂ (mm)	Fillet radius R_1, R_2	
		$\beta_1(\circ)$			(mm)	
Value	15, 5, 110	1.5	12	1	2,4	

Table S4 Geometric parameters of the smooth cascaded divergent channel

Table S5 Wetting performances at different cells of backgrounds with different average wetting

Parts of	0.20°	mm^{-1}	$0.30^{\circ} \text{ mm}^{-1}$		0.35°	mm^{-1}
backgrounds	$\overline{\theta}$ (°)	α (°)	$\overline{ heta}$ (°)	α (°)	$\overline{\theta}$ (°)	α (°)
Cell ₁	150.16	5.61	150.16	5.61	150.16	5.61
Cell ₂	149.66	7.5	149.16	15.51	146.86	25.43
Cell ₃	149.16	15.51	146.86	25.43	134.06	pinning
Cell ₄	148.11	21.47	139.06	56.43	131.84	pinning
Cell ₅	146.86	25.43	134.06	pinning	129.22	pinning
Cell ₆	143.96	35.33	133.5	pinning	128.04	pinning
Cell ₇	139.06	56.43	131.84	pinning	125.62	pinning
Cell ₈	136.66	81.26	130.3	pinning	122.38	pinning
Cell ₉	134.06	pinning	129.22	pinning	118.88	pinning
Cell ₁₀	133.88	pinning	128.53	pinning	117.18	pinning
Cell ₁₁	133.5	pinning	128.04	pinning	116.45	pinning
Cell ₁₂	132.57	pinning	127.34	pinning	115.72	pinning
Cell ₁₃	131.84	pinning	125.62	pinning	114.99	pinning
Cell ₁₄	131.32	pinning	124.21	pinning	114.26	pinning
Cell ₁₅	130.8	pinning	122.81	pinning	114.18	pinning
Cell ₁₆	130.28	pinning	121.41	pinning	113.716	pinning
Cell ₁₇	129.76	pinning	120.01	pinning	113.252	pinning
Cell ₁₈	129.24	pinning	118.61	pinning	112.788	pinning
Cell ₁₉	128.72	pinning	117.18	pinning	112.324	pinning
Cell ₂₀	128.26	pinning	117.02	pinning	111.86	pinning

gradients ($k = 0.20, 0.30, \text{ and } 0.35^{\circ} \text{ mm}^{-1}$)

As can be seen from Table S5, the contact angles of Cell₁-Cell₂₀ of backgrounds with different average wetting gradients ($k = 0.20, 0.30, \text{ and } 0.35^{\circ} \text{ mm}^{-1}$) range from 150.16° to 128.26°, 150.16° to 117.02° and from 150.16° to 111.86°, respectively. The calculation processes of k are as follows: $k = 0.20^{\circ} \text{ mm}^{-1}$: (150.16°-128.26°)/110 mm \approx 0.20° mm⁻¹; $k = 0.30^{\circ} \text{ mm}^{-1}$: (150.16°-117.02°)/110 mm $\approx 0.30^{\circ} \text{ mm}^{-1}$; $k = 0.35^{\circ} \text{ mm}^{-1}$: (150.16°-111.86°)/110 mm $\approx 0.35^{\circ} \text{ mm}^{-1}$. In addition, the contact angle and the sliding angle of the background with $k = 0^{\circ} \text{ mm}^{-1}$ are the same as these of Cell₁ of the background with $k > 0^{\circ} \text{ mm}^{-1}$.

Fig. S5 Sliding angles α and their sine values sin α at different positions of different gradient hydrophobic backgrounds.

Video S1

Transportation processes at CDU ($\Delta\theta = 0^\circ$) and SDU ($\Delta\theta = 0^\circ$) junctions with $\frac{w_1}{w_2} = 0.14$ and $w_2 = 1$ mm showing the drop being blocked and passing, respectively; this implies that the streamlined channel favors the drop passage through junctions. The video is shown at 0.5 × speed.

Video S2

Transportation processes at SDU ($\Delta \theta = 0^{\circ}$) and CWP ($\Delta \theta = 58.7^{\circ}$) junctions with $\frac{w_I}{w_2} = 0$ and $w_2 = 1$ mm showing the drop being blocked and passing, respectively; this implies that $\Delta \theta$ favors the drop passage through junctions. The video is shown at 0.5 × speed.

Video S3

The transportation processes of one drop with volume of 25 µL on different CWPs (k = 0, 0.20, 0.30, and 0.35° mm⁻¹) with $\beta_1 = 0.15^{\circ}, \beta_2 = 12^{\circ}, L_c = 5$ mm, $\frac{w_1}{w_2} = 0.74$ and $w_2 = 1$ mm. Drops can achieve the transportation distance of 103 mm at $k = 0.30^{\circ}$ mm⁻¹, which is the highest of the four, and the average velocity v_a can reach 92 mm s⁻¹. The video is shown at $0.25 \times$ speed.

Video S4

The transportation processes of multiple drops (One drop: 5 µL) on the vertical long-distance straight channel with $\beta_1 = 0.15^\circ$, $\beta_2 = 12^\circ$, $L_c = 5$ mm, $\frac{w_1}{w_2} = 0.83$ and $w_2 = 1.5$ mm. All drops were transported to a reservoir and the smooth cascaded divergent channel on the wetting gradient background shows the capacity of anti-gravity long-distance transportation of drops. The video is shown at 1 × speed.

Video S5

The transportation processes of multiple drops (One drop: 5 µL) on the inclined straight channel with $\beta_1 = 0.15^\circ$, $\beta_2 = 12^\circ$, $L_c = 5$ mm, $\frac{w_1}{w_2} = 0.83$ and $w_2 = 1.5$ mm. The uphill titled angle is about 3° . All drops were transported to a reservoir. The video is shown at 1 × speed.

Video S6

The liquid identification processes on the horizontal four-reservoir channel with $\beta_1 = 0.15^\circ$, $\beta_2 = 12^\circ$, $L_c = 5 \text{ mm}$, $\frac{w_1}{w_2} = 0.83$ and $w_2 = 1.5 \text{ mm}$. The continuous transportation of liquid was completed and the liquid identification experiment also can be achieved on the four-reservoir channel. The video is shown at 1 × speed.

Video S7

The transportation processes of one drop with volume of 25 µL on the horizontal spiral channel with $\beta_1 = 0.15^\circ$, $\beta_2 = 12^\circ$, $L_c = 5$ mm, $\frac{w_1}{w_2} = 0.74$ and $w_2 = 1$ mm. The drop can achieve the transportation distance of 72 mm. The video is shown at 1 × speed.