Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Hydrophilic Fully Conjugated Covalent Organic Framework for Photocatalytic CO₂ Reduction to CO Nearly 100% by Pure Water

Xiaoxiao Yu, Ke Gong, Shuyao Tian, Guangpeng Gao, Jing Xie*, Xu-Hui Jin*

Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China.

Email: jingxie@bit.edu.cn; xuhui.jin@bit.edu.cn

Table of Contents

1. Computational Results
2. Supplementary Figures4
Figure S14
Figure S25
Figure S3
Figure S4
Figure S5
Figure S6
Figure S77
Figure S87
Figure S9
Figure S10
Figure S11
Figure S129
Figure S139
Figure S1410
Figure S1510
Figure S1610
Figure S1711

1. Computational Results

(1) Diagram of building simulation model of LZU1-COF.

(2) Other adsorption structures and adsorption energies of CO_2 and H_2O in LZU1-COF and QL-COF.

3. Supplementary Figures

Figure S1 Schematic and the model reaction equations of the synthesis for LZU1-COF and QL-COF via schiff-base and Doebner reaction, respectively.

Figure S2 XPS spectra of (A) N1s of the LZU1-COF,(B) N1s and (C) O1s of the QL-COF.

Figure S3 Powder X-ray diffraction spectra of the LZU1-COF, QL-COF, Ph(CHO)₃, and Ph(NH₂)₂.

Figure S4 SEM images of (A) LZU1-COF and (B) QL-COF.

Figure S5 TEM images of (A) LZU1-COF and (B) QL-COF.

Figure S6 TGA analysis on the polymers under air, with a ramping rate of 10 °C min.

Figure S7 H_2O contact angles for LZU1-COF and QL-COF.

Figure S8 Adsorption (filled) and desorption (empty) isotherms of CO₂ at 273 k for LZU1-COF and QL-COF.

Figure S9 CO_2 adsorption isotherms of LZU1-COF and QL-COF at 273 K.

Figure S10 Tauc plots together with the bandgaps: (A) LZU1-COF and (B) QL-COF.

Figure S11 Motto-Schottky plots of (A) LZU1-COF and (B) QL-COF. Electrode in 0.2 M Na₂SO₄ (pH=6.8).

Figure S12 GC spectrum of the photocatalytic reaction of CO_2 over QL-COF. Retention time: 1.522 min (O_2), 2.088 min (N_2), 3.259 min (CH_4) and 4.401 min (CO).

Figure S13 ¹³C NMR spectrum for liquid phase of the photocatalytic reaction of ¹³CO₂ over QL-COF.

Figure S14 Average production rates from CO_2 photoreduction over LZU1-COF, QL-COF, TiO₂ and g-C₃N₄ for 5 h.

Figure S15 GC-MS spectrum of ¹³CO generated from the photocatalytic reaction of ¹³CO₂ over QL-COF.

Figure S16 (A) TEM and (B) SEM images of QL-COF-After.

Figure S17 (A) XRD, (B) FT-IR and (C) UV–Vis light absorption spectra of QL-COF and QL-COF-After. (D) UV–Vis light absorption spectra of LZU1-COF and LZU1-COF-After.