Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2022

## **Supporting Information For**

## Near-infared upper phenyl-fused BODIPY as photosensitizer for

## photothermal-photodynamic therapy

Tao Yu<sup>a+</sup>, Dongxiang Zhang<sup>a+</sup>, Jie Wang<sup>b+</sup>, Changliang Sun<sup>a</sup>, Tianfang Cui<sup>a</sup>, Zhangrun Xu<sup>b</sup>, Xin-Dong Jiang<sup>a,\*</sup> and Jianjun Du<sup>c,\*</sup>

<sup>a.</sup> Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China. E-mail: xdjiang@syuct.edu.cn

<sup>b.</sup>Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China

<sup>c.</sup> State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China. E-mail: dujj@dlut.edu.cn

<sup>+</sup> These three authors contributed equally to this work.

| 1. | Table               | S2  |
|----|---------------------|-----|
| 2. | Figures             | S3  |
| 3. | NMR and HRMS        | S7  |
| 4. | X-ray data for BBDP |     |
| 5. | ChekCIF of BBDP     | S19 |

# 1. Table

|                  | ) () (mm)                              |                   | fullers (resea) | ⊵ε[10⁵·M⁻¹·cm⁻ |
|------------------|----------------------------------------|-------------------|-----------------|----------------|
| BRDb             | λ <sub>abs</sub> /λ <sub>em</sub> (nm) | Stokes-snift (nm) | twnm (nm)       | 1]             |
| DMSO             | 778/827                                | 49                | 125.46          | 2.15           |
| $CH_2CI_2$       | 760/812                                | 52                | 117.08          | 1.59           |
| MeOH             | 754/812                                | 58                | 106.28          | 1.72           |
| THF              | 756/810                                | 54                | 106.27          | 2.03           |
| MeCN             | 754/817                                | 63                | 110.38          | 1.73           |
| EtOAc            | 750/808                                | 60                | 96.30           | 1.95           |
| H <sub>2</sub> O | 774/821                                | 47                | 164.51          | 1.29           |

Table S1 Spectral data of BBDP in different solutions.

Note: "fwhm" is an abbreviation for full width at half maxima.

# 2. Figures



Fig. S1 (a) Absorption spectra and (b) fluorescence spectra in different solvents.



Fig. S2 Absorption spectra at different ratios of ethyl acetate and DMSO from 9:1, 7:3, 5:5, 3:7 to

1:9.



**Fig. S3** Frontier molecular orbitals have been performed at the Becke3LYP (B3LYP) level with 6-31+G(d,p) base sites. (a) HOMO/LUMO= -4.67/-2.69 eV,  $\Delta$  = 1.98 eV for **BBDP**; (b) HOMO/LUMO= -8.92/-6.74 eV,  $\Delta$  = 2.18 eV for **BBDP-2H**<sup>+</sup>.



**Fig. S4** Fluorescence intensity variations (810 nm for **BBDP**, 540 nm for **TM-BDP**) of 5 μM **BBDP** (black line) and **TM-BDP** (red line) under continuous irradiation with 760 nm for **BBDP**, 470 nm for **TM-BDP** in toluene, and the light power density is 0.5 mW/cm<sup>2</sup>, the slit width was 8.0 nm for excitation, and 1 nm for emission. Note: for clarity, the initial normalized intensities are arbitrarily designated as 1.0 and 0.9, respectively.



Fig. S5 The temperature of aqueous solution without NPs under different power density (0.4, 0.6, 0.8 W·cm<sup>-2</sup>) radiation within 5 min.



**Fig. S6** MTT assay of different concentrations from 0-20  $\mu$ M with or without light radiation respectively. 635 nm NIR laser (10 mW·cm<sup>-2</sup>) was applied for 20 min irradiation.



Fig. S7 Bright field photograph of cell. (a) only NPs treated; (b) NPs + light radiation treated.

#### 3. NMRand HRMS



<sup>1</sup>H NMR spectrogram for dye **BBDP**. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.79 (s, 1H), 7.68 (d, J = 16 Hz, 2H), 7.64 (d, J = 8.8 Hz, 2H), 7.56 (d, J = 8.8 Hz, 4H), 7.38 – 7.29 (m, 6H), 7.20 (d, J = 16 Hz, 2H), 6.73 (d, J = 8.8 Hz, 4H), 3.05 (s, 12H), 2.98 (s, 8H).



<sup>13</sup>C NMR spectrogram for dye **BBDP**. <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 151.1, 138.0, 131.1, 129.1, 128.7, 127.9, 127.2, 125.5, 124.8, 124.5, 123.6, 118.8, 115.7, 112.3, 40.4, 30.2, 22.3.



HRMS (ESI) m/z calcd for  $C_{45}H_{41}BF_2N_4Na^+$  (M+Na)<sup>+</sup> 709.32846, found 709.32867.

## 4. X-ray data for BBDP

| Identification code                  | YT-2                                                 |
|--------------------------------------|------------------------------------------------------|
| Empirical formula                    | $C_{45}H_{41}BF_2N_4$                                |
| Formula weight                       | 686.63                                               |
| Temperature/K                        | 170.00(10)                                           |
| Crystal system                       | monoclinic                                           |
| Space group                          | P2 <sub>1</sub> /n                                   |
| a/Å                                  | 7.3953(3)                                            |
| b/Å                                  | 23.4385(8)                                           |
| c/Å                                  | 20.7039(7)                                           |
| α/°                                  | 90                                                   |
| β/°                                  | 98.181(3)                                            |
| $\gamma/^{\circ}$                    | 90                                                   |
| Volume/Å <sup>3</sup>                | 3552.2(2)                                            |
| Ζ                                    | 4                                                    |
| $\rho_{calc}g/cm^3$                  | 1.284                                                |
| µ/mm <sup>-1</sup>                   | 0.653                                                |
| F(000)                               | 1448.0                                               |
| Crystal size/mm <sup>3</sup>         | $0.14 \times 0.12 \times 0.1$                        |
| Radiation                            | Cu Ka ( $\lambda = 1.54184$ )                        |
| $2\Theta$ range for data collection/ | ° 5.728 to 147.84                                    |
| Index ranges                         | $-8 \le h \le 8, -23 \le k \le 29, -25 \le l \le 16$ |
| Reflections collected                | 14389                                                |
| Independent reflections              | $6949 [R_{int} = 0.0830, R_{sigma} = 0.0788]$        |
| Data/restraints/parameters           | 6949/0/473                                           |
| Goodness-of-fit on F <sup>2</sup>    | 0.980                                                |
| Final R indexes [I>= $2\sigma$ (I)]  | $R_1 = 0.0640,  wR_2 = 0.1605$                       |
| Final R indexes [all data]           | $R_1 = 0.0866,  wR_2 = 0.1778$                       |
| Largest diff. peak/hole / e Å-3      | 3 0.36/-0.33                                         |

#### Table 1 Crystal data and structure refinement for YT-2.

#### Crystal structure determination of [YT-2]

**Crystal Data** for C<sub>45</sub>H<sub>41</sub>BF<sub>2</sub>N<sub>4</sub> (M =686.63 g/mol): monoclinic, space group P2<sub>1</sub>/n (no. 14), a = 7.3953(3) Å, b = 23.4385(8) Å, c = 20.7039(7) Å,  $\beta = 98.181(3)^\circ$ , V = 3552.2(2) Å<sup>3</sup>, Z = 4, T = 170.00(10) K,  $\mu$ (Cu K $\alpha$ ) = 0.653 mm<sup>-1</sup>, *Dcalc* = 1.284 g/cm<sup>3</sup>, 14389 reflections measured (5.728°  $\leq 2\Theta \leq 147.84^\circ$ ), 6949 unique ( $R_{int} = 0.0830$ ,  $R_{sigma} = 0.0788$ ) which were used in all calculations. The final  $R_1$  was 0.0640 (I >2 $\sigma$ (I)) and  $wR_2$  was 0.1778 (all data).

#### **Refinement model description**

| Table 2 Fractional Atomic Coordinates (×10 <sup>4</sup> ) and Equivalent Isotropic Displacement                    |
|--------------------------------------------------------------------------------------------------------------------|
| Parameters ( $Å^2 \times 10^3$ ) for YT-2. U <sub>eq</sub> is defined as 1/3 of of the trace of the orthogonalised |
| U <sub>IJ</sub> tensor.                                                                                            |

| Atom | x          | У           | z           | U(eq)   |
|------|------------|-------------|-------------|---------|
| F1   | 3998.1(19) | 2144.1(6)   | 7003.5(6)   | 34.2(3) |
| F2   | 7072(2)    | 2253.3(6)   | 7207.6(6)   | 35.6(4) |
| N1   | 5644(3)    | 2224.2(8)   | 6081.7(8)   | 23.1(4) |
| N2   | 5881(2)    | 1347.8(8)   | 6780.4(8)   | 23.4(4) |
| N3   | 3843(3)    | 5687.3(9)   | 7725.2(10)  | 36.7(5) |
| N4   | 4943(3)    | 1742.9(10)  | 10995.6(10) | 43.0(6) |
| C1   | 5940(3)    | 2234.5(9)   | 5006.4(10)  | 23.4(5) |
| C2   | 6443(3)    | 2116.2(9)   | 4361.6(10)  | 22.9(5) |
| C3   | 7723(3)    | 1707.3(10)  | 4245.5(11)  | 27.0(5) |
| C4   | 8234(3)    | 1647.1(10)  | 3628.4(11)  | 30.2(5) |
| C5   | 7441(4)    | 1993.5(10)  | 3124.0(11)  | 33.0(5) |
| C6   | 6167(3)    | 2401.6(10)  | 3234.3(11)  | 31.2(5) |
| C7   | 5684(3)    | 2478.3(10)  | 3851.6(10)  | 25.7(5) |
| C8   | 4358(3)    | 2931.1(10)  | 4000.2(11)  | 30.9(5) |
| C9   | 4973(3)    | 3228.2(10)  | 4659.6(10)  | 27.6(5) |
| C10  | 5402(3)    | 2774.8(9)   | 5175.1(10)  | 24.3(5) |
| C11  | 5292(3)    | 2769.6(9)   | 5852.2(11)  | 23.9(5) |
| C12  | 6021(3)    | 1885.0(9)   | 5570.3(10)  | 23.0(5) |
| C13  | 6244(3)    | 1299.7(9)   | 5647.5(10)  | 23.6(5) |
| C14  | 6171(3)    | 1027.8(9)   | 6236.4(10)  | 23.3(5) |
| C15  | 6268(3)    | 439.6(9)    | 6420.7(11)  | 24.0(5) |
| C16  | 6675(3)    | -70.1(10)   | 6057.6(11)  | 25.5(5) |
| C17  | 7501(3)    | -60.7(11)   | 5493.4(11)  | 32.1(5) |
| C18  | 7959(4)    | -563.1(11)  | 5197.7(12)  | 36.7(6) |
| C19  | 7619(3)    | -1086.2(11) | 5473.7(13)  | 36.3(6) |
| C20  | 6823(3)    | -1100.2(10) | 6037.7(12)  | 33.1(6) |
| C21  | 6339(3)    | -602.3(10)  | 6336.1(11)  | 28.5(5) |
| C22  | 5362(4)    | -625.0(10)  | 6923.6(12)  | 33.8(5) |
| C23  | 5850(3)    | -142.9(10)  | 7417.7(11)  | 27.5(5) |
| C24  | 5966(3)    | 412.6(10)   | 7065.8(10)  | 24.3(5) |
| C25  | 5788(3)    | 980.2(10)   | 7292.6(10)  | 23.1(5) |
| C26  | 5558(3)    | 1197.0(10)  | 7923.4(10)  | 26.2(5) |
| C27  | 5588(3)    | 887.5(10)   | 8475.6(11)  | 30.6(5) |
| C28  | 5354(3)    | 1114.7(10)  | 9112.1(11)  | 28.6(5) |
| C29  | 5057(3)    | 1692.4(10)  | 9227.3(11)  | 29.4(5) |
|      |            |             |             |         |

| Atom | x       | у          | z           | U(eq)   |
|------|---------|------------|-------------|---------|
| C30  | 4965(3) | 1901.5(11) | 9842.7(11)  | 30.6(5) |
| C31  | 5096(3) | 1533.1(11) | 10389.0(11) | 31.6(5) |
| C32  | 5356(4) | 952.7(11)  | 10273.8(12) | 39.0(6) |
| C33  | 5508(4) | 752.9(11)  | 9655.6(12)  | 39.1(6) |
| C34  | 5176(4) | 2344.0(13) | 11136.8(13) | 46.1(7) |
| C35  | 4888(4) | 1360.7(14) | 11540.7(12) | 48.1(8) |
| C36  | 4984(3) | 3226.9(10) | 6286.9(11)  | 26.1(5) |
| C37  | 4946(3) | 3784.6(10) | 6127.6(11)  | 28.9(5) |
| C38  | 4710(3) | 4262.6(10) | 6553.2(11)  | 27.6(5) |
| C39  | 4611(3) | 4207.8(10) | 7223.7(11)  | 28.5(5) |
| C40  | 4351(3) | 4669.1(10) | 7610.7(11)  | 27.4(5) |
| C41  | 4147(3) | 5226.6(10) | 7348.0(12)  | 29.3(5) |
| C42  | 4293(4) | 5285.8(11) | 6682.0(12)  | 36.7(6) |
| C43  | 4550(4) | 4817.4(10) | 6301.3(11)  | 35.3(6) |
| C44  | 4101(4) | 6260.4(10) | 7488.7(13)  | 38.5(6) |
| C45  | 3730(4) | 5633.0(11) | 8412.5(12)  | 35.8(6) |
| B1   | 5643(4) | 2004.5(11) | 6789.4(12)  | 25.2(5) |

Table 2 Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for YT-2.  $U_{eq}$  is defined as 1/3 of of the trace of the orthogonalised  $U_{IJ}$  tensor.

Table 3 Anisotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for YT-2. The Anisotropicdisplacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

| Atom | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| F1   | 41.9(8)         | 32.3(8)         | 32.2(7)         | 6.8(6)          | 18.5(6)         | 7.8(6)          |
| F2   | 47.1(8)         | 31.0(8)         | 26.4(7)         | -1.0(6)         | -2.8(6)         | -7.6(6)         |
| N1   | 30.0(10)        | 20.7(9)         | 19.6(9)         | -0.1(7)         | 6.5(7)          | 1.5(8)          |
| N2   | 26.9(9)         | 23.7(10)        | 20.1(9)         | 2.0(7)          | 5.4(7)          | -0.1(8)         |
| N3   | 51.7(13)        | 23.5(11)        | 37.1(11)        | -3.6(9)         | 13.7(10)        | 5.0(10)         |
| N4   | 55.6(14)        | 50.9(15)        | 23.8(11)        | -1.8(10)        | 10.3(10)        | 3.0(12)         |
| C1   | 25.0(11)        | 23.3(11)        | 22.1(11)        | 0.5(8)          | 4.7(9)          | 1.3(9)          |
| C2   | 25.7(11)        | 22.0(11)        | 21.0(10)        | -1.6(8)         | 3.1(8)          | -2.3(9)         |
| C3   | 31.1(12)        | 23.1(11)        | 26.5(11)        | 0.3(9)          | 3.1(9)          | 2.7(9)          |
| C4   | 33.3(12)        | 29.6(12)        | 28.6(12)        | -4.4(9)         | 6.9(10)         | 4.3(10)         |
| C5   | 48.2(14)        | 29.9(13)        | 22.5(11)        | -1.3(9)         | 10.5(10)        | 0.5(11)         |
| C6   | 40.4(13)        | 28.7(12)        | 24.5(11)        | 3.2(9)          | 4.8(10)         | 2.2(11)         |
| C7   | 32.3(12)        | 22.8(11)        | 21.8(11)        | 0.2(8)          | 3.3(9)          | -0.6(9)         |
| C8   | 37.4(13)        | 32.8(13)        | 22.3(11)        | 4.0(9)          | 3.5(10)         | 9.0(11)         |

Atom U<sub>11</sub> U<sub>22</sub> U33 U<sub>13</sub> U<sub>12</sub>  $U_{23}$ C9 33.6(12) 24.8(11) 25.1(11) 3.3(9) 6.1(9) 4.9(10) C10 5.9(9) 28.3(11) 22.5(11) 22.6(11) 1.4(8)-0.5(9)C11 25.5(11) 22.8(11) 23.8(11) 0.6(8)4.7(9) 0.8(9)C12 25.1(11) 23.1(11) 21.4(10) -1.2(8)5.5(8) 1.3(9) C13 28.3(11) 23.7(11) 19.5(10) 0.6(8)5.4(9) 1.4(9) C14 25.0(11) 22.0(11) 23.6(11) -1.5(8)5.5(9) -1.0(9)C15 23.2(10) 22.8(11) 25.7(11) 1.7(9) 2.7(9) -1.4(9)C16 25.2(11) 24.1(11) 26.0(11) -1.7(9)-0.8(9) 0.4(9)C17 38.2(13) 28.2(13) 29.8(12) 0.3(10) 5.0(10) 1.9(11) C18 43.8(14) 38.0(14) 29.3(12) -6.5(10)8.5(11) 1.6(12) C19 37.9(14) 28.9(13)40.8(14) -8.6(11) 1.3(11) 2.5(11) C20 32.5(12) 22.6(12) 42.5(14) -0.4(10)-0.1(11) -1.4(10)C21 31.9(12) -0.4(9)-0.2(9)28.8(12) 23.5(12)-2.1(9)C22 39.5(13) 24.0(12) 39.0(13) 4.3(10)9.4(11) -4.2(10)C23 5.6(9) 0.6(9) 31.0(12) 25.8(12) 26.6(11) 7.1(9) C24 24.8(11) 23.5(11) 24.5(11) 2.9(9) 3.0(9) -0.6(9)C25 22.9(10) 25.9(11) 20.7(10) 2.6(8) 3.5(8) -2.6(9)C26 28.0(11) 26.8(12) 24.1(11) 1.5(9) 4.3(9) -0.8(9)C27 38.3(13) 27.7(12) 25.8(12) 0.6(9) 4.1(10) -0.8(10)C28 34.3(12) 29.1(12) 22.2(11) 2.5(9) 3.8(9) -2.9(10)C29 31.5(12) 30.6(13) 26.5(12) 7.0(9) 5.8(9) 1.2(10)C30 7.9(10) 2.7(10)33.8(12) 32.4(13) 26.5(12) 1.9(10) C31 33.1(12) 42.3(15) 19.9(11) 1.7(10)5.6(9) -1.4(11)C32 56.2(17) 35.9(14) 24.5(12) 4.9(11) 7.6(10) -6.6(13)C33 59.2(17) 29.5(13) 28.7(13) 4.4(10)6.9(12) -6.9(12)C34 47.0(16) 55.6(18) 35.2(14) -14.6(13)4.1(12) 6.7(14)C35 46.3(16) 76(2) 22.6(13) 4.7(13)7.6(11) 4.3(15) C36 30.7(11) 25.9(11) 22.9(11) -2.0(9)7.6(9) -0.2(9)C37 34.6(12) 26.3(12)26.3(11) -1.6(9)6.4(10) 0.1(10)C38 32.6(12) 23.1(11) 27.8(11) -1.3(9)6.3(9) 0.1(10) C39 35.2(12) 20.0(11) 31.4(12) 2.5(9) 8.4(10) -2.1(10)C40 30.9(11) 26.9(12) 25.8(11) 0.4(9) 8.7(9) -0.1(10)C41 30.7(12) 24.9(12) 33.3(12) -2.4(9)7.5(10) 2.9(10)C42 54.2(16) 22.7(12)33.8(13) 4.3(10) 8.2(12) 4.3(11)C43 53.7(16) 27.9(13) 25.0(12) 3.1(10) 8.1(11) 2.7(11)C44 45.7(15) 23.6(12)48.4(15) -2.7(11)14.1(12) 3.8(11) C45 35.4(13) 36.4(14) 36.0(13) -6.1(11) 6.9(11) 3.1(11)

Table 3 Anisotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for YT-2. The Anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

Table 3 Anisotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for YT-2. The Anisotropicdisplacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

| Atom | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| B1   | 32.0(13)        | 23.1(12)        | 21.0(12)        | 0.2(10)         | 5.8(10)         | -2.2(11)        |

#### Table 4 Bond Lengths for YT-2.

| Atom Atom |     | Length/Å | Atom | n Atom | Length/Å |
|-----------|-----|----------|------|--------|----------|
| F1        | B1  | 1.392(3) | C14  | C15    | 1.429(3) |
| F2        | B1  | 1.395(3) | C15  | C16    | 1.465(3) |
| N1        | C11 | 1.375(3) | C15  | C24    | 1.387(3) |
| N1        | C12 | 1.384(3) | C16  | C17    | 1.393(3) |
| N1        | B1  | 1.553(3) | C16  | C21    | 1.411(3) |
| N2        | C14 | 1.395(3) | C17  | C18    | 1.391(3) |
| N2        | C25 | 1.375(3) | C18  | C19    | 1.391(4) |
| N2        | B1  | 1.550(3) | C19  | C20    | 1.381(4) |
| N3        | C41 | 1.370(3) | C20  | C21    | 1.391(3) |
| N3        | C44 | 1.452(3) | C21  | C22    | 1.501(3) |
| N3        | C45 | 1.443(3) | C22  | C23    | 1.533(3) |
| N4        | C31 | 1.368(3) | C23  | C24    | 1.500(3) |
| N4        | C34 | 1.444(4) | C24  | C25    | 1.423(3) |
| N4        | C35 | 1.446(3) | C25  | C26    | 1.434(3) |
| C1        | C2  | 1.462(3) | C26  | C27    | 1.352(3) |
| C1        | C10 | 1.387(3) | C27  | C28    | 1.454(3) |
| C1        | C12 | 1.421(3) | C28  | C29    | 1.398(3) |
| C2        | C3  | 1.392(3) | C28  | C33    | 1.401(3) |
| C2        | C7  | 1.408(3) | C29  | C30    | 1.376(3) |
| C3        | C4  | 1.390(3) | C30  | C31    | 1.415(3) |
| C4        | C5  | 1.385(3) | C31  | C32    | 1.399(4) |
| C5        | C6  | 1.384(3) | C32  | C33    | 1.382(4) |
| C6        | C7  | 1.386(3) | C36  | C37    | 1.347(3) |
| C7        | C8  | 1.507(3) | C37  | C38    | 1.451(3) |
| C8        | C9  | 1.542(3) | C38  | C39    | 1.406(3) |
| C9        | C10 | 1.507(3) | C38  | C43    | 1.400(3) |
| C10       | C11 | 1.416(3) | C39  | C40    | 1.376(3) |
| C11       | C36 | 1.439(3) | C40  | C41    | 1.415(3) |
| C12       | C13 | 1.388(3) | C41  | C42    | 1.405(3) |
| C13       | C14 | 1.384(3) | C42  | C43    | 1.381(3) |

## Table 5 Bond Angles for YT-2.

| Atom Atom Atom |     | n Atom | Angle/°    | Angle/° Atom Atom |     | n Atom | Angle/°    |
|----------------|-----|--------|------------|-------------------|-----|--------|------------|
| C11            | N1  | C12    | 108.57(17) | C18               | C17 | C16    | 121.2(2)   |
| C11            | N1  | B1     | 127.49(18) | C19               | C18 | C17    | 119.7(2)   |
| C12            | N1  | B1     | 123.94(18) | C20               | C19 | C18    | 119.5(2)   |
| C14            | N2  | B1     | 125.06(18) | C19               | C20 | C21    | 121.5(2)   |
| C25            | N2  | C14    | 108.41(18) | C16               | C21 | C22    | 119.7(2)   |
| C25            | N2  | B1     | 126.49(18) | C20               | C21 | C16    | 119.3(2)   |
| C41            | N3  | C44    | 119.8(2)   | C20               | C21 | C22    | 120.9(2)   |
| C41            | N3  | C45    | 122.0(2)   | C21               | C22 | C23    | 114.8(2)   |
| C45            | N3  | C44    | 116.3(2)   | C24               | C23 | C22    | 109.88(18) |
| C31            | N4  | C34    | 120.9(2)   | C15               | C24 | C23    | 122.4(2)   |
| C31            | N4  | C35    | 120.6(2)   | C15               | C24 | C25    | 108.06(19) |
| C34            | N4  | C35    | 117.5(2)   | C25               | C24 | C23    | 129.6(2)   |
| C10            | C1  | C2     | 121.5(2)   | N2                | C25 | C24    | 108.31(18) |
| C10            | C1  | C12    | 107.44(19) | N2                | C25 | C26    | 120.4(2)   |
| C12            | C1  | C2     | 130.9(2)   | C24               | C25 | C26    | 131.3(2)   |
| C3             | C2  | C1     | 123.8(2)   | C27               | C26 | C25    | 126.2(2)   |
| C3             | C2  | C7     | 119.6(2)   | C26               | C27 | C28    | 125.5(2)   |
| C7             | C2  | C1     | 116.40(19) | C29               | C28 | C27    | 123.5(2)   |
| C4             | C3  | C2     | 120.6(2)   | C29               | C28 | C33    | 116.5(2)   |
| C5             | C4  | C3     | 119.5(2)   | C33               | C28 | C27    | 120.0(2)   |
| C6             | C5  | C4     | 120.4(2)   | C30               | C29 | C28    | 122.2(2)   |
| C5             | C6  | C7     | 120.8(2)   | C29               | C30 | C31    | 121.1(2)   |
| C2             | C7  | C8     | 118.24(19) | N4                | C31 | C30    | 120.6(2)   |
| C6             | C7  | C2     | 119.1(2)   | N4                | C31 | C32    | 122.5(2)   |
| C6             | C7  | C8     | 122.7(2)   | C32               | C31 | C30    | 116.9(2)   |
| C7             | C8  | С9     | 112.34(19) | C33               | C32 | C31    | 121.2(2)   |
| C10            | С9  | C8     | 108.32(18) | C32               | C33 | C28    | 122.1(2)   |
| C1             | C10 | С9     | 120.29(19) | C37               | C36 | C11    | 124.7(2)   |
| C1             | C10 | C11    | 107.48(19) | C36               | C37 | C38    | 126.9(2)   |
| C11            | C10 | С9     | 132.2(2)   | C39               | C38 | C37    | 123.8(2)   |
| N1             | C11 | C10    | 108.40(19) | C43               | C38 | C37    | 120.1(2)   |
| N1             | C11 | C36    | 121.01(19) | C43               | C38 | C39    | 116.1(2)   |
| C10            | C11 | C36    | 130.5(2)   | C40               | C39 | C38    | 122.3(2)   |
| N1             | C12 | C1     | 107.93(18) | C39               | C40 | C41    | 121.2(2)   |
| N1             | C12 | C13    | 120.88(19) | N3                | C41 | C40    | 121.7(2)   |
| C13            | C12 | C1     | 130.9(2)   | N3                | C41 | C42    | 121.6(2)   |
| C14            | C13 | C12    | 122.5(2)   | C42               | C41 | C40    | 116.7(2)   |
| N2             | C14 | C15    | 108.11(18) | C43               | C42 | C41    | 121.2(2)   |

## Table 5 Bond Angles for YT-2.

| Atom Atom Atom |     |     | Angle/°    | Atom | Atom | Atom Angle/° |            |
|----------------|-----|-----|------------|------|------|--------------|------------|
| C13            | C14 | N2  | 119.57(19) | C42  | C43  | C38          | 122.5(2)   |
| C13            | C14 | C15 | 132.3(2)   | F1   | B1   | F2           | 108.87(19) |
| C14            | C15 | C16 | 131.0(2)   | F1   | B1   | N1           | 109.89(19) |
| C24            | C15 | C14 | 107.0(2)   | F1   | B1   | N2           | 110.06(19) |
| C24            | C15 | C16 | 122.0(2)   | F2   | B1   | N1           | 110.18(19) |
| C17            | C16 | C15 | 124.3(2)   | F2   | B1   | N2           | 110.20(19) |
| C17            | C16 | C21 | 118.7(2)   | N2   | B1   | N1           | 107.63(18) |
| C21            | C16 | C15 | 116.7(2)   |      |      |              |            |

# Table 6 Torsion Angles for YT-2.

| Α  | B   | С   | D   | Ang | le/°     | А   | В   | С   | D   | Angle/°    |
|----|-----|-----|-----|-----|----------|-----|-----|-----|-----|------------|
| N1 | C11 | C36 | C37 |     | 167.9(2) | C15 | C16 | C21 | C22 | 8.4(3)     |
| N1 | C12 | C13 | C14 |     | -2.4(3)  | C15 | C24 | C25 | N2  | 3.3(3)     |
| N2 | C14 | C15 | C16 | -   | 175.2(2) | C15 | C24 | C25 | C26 | -176.4(2)  |
| N2 | C14 | C15 | C24 |     | 2.2(2)   | C16 | C15 | C24 | C23 | -6.1(3)    |
| N2 | C25 | C26 | C27 | -   | 174.5(2) | C16 | C15 | C24 | C25 | 174.39(19) |
| N3 | C41 | C42 | C43 | -   | 178.2(2) | C16 | C17 | C18 | C19 | -1.1(4)    |
| N4 | C31 | C32 | C33 | -   | 180.0(3) | C16 | C21 | C22 | C23 | -37.5(3)   |
| C1 | C2  | C3  | C4  | -   | 175.2(2) | C17 | C16 | C21 | C20 | -0.6(3)    |
| C1 | C2  | C7  | C6  |     | 177.5(2) | C17 | C16 | C21 | C22 | -176.8(2)  |
| C1 | C2  | C7  | C8  |     | -3.2(3)  | C17 | C18 | C19 | C20 | 0.2(4)     |
| C1 | C10 | C11 | N1  |     | -3.8(3)  | C18 | C19 | C20 | C21 | 0.4(4)     |
| C1 | C10 | C11 | C36 |     | 172.8(2) | C19 | C20 | C21 | C16 | -0.2(3)    |
| C1 | C12 | C13 | C14 | -   | 175.7(2) | C19 | C20 | C21 | C22 | 175.9(2)   |
| C2 | C1  | C10 | C9  |     | 11.8(3)  | C20 | C21 | C22 | C23 | 146.4(2)   |
| C2 | C1  | C10 | C11 | -   | 171.0(2) | C21 | C16 | C17 | C18 | 1.3(3)     |
| C2 | C1  | C12 | N1  |     | 171.3(2) | C21 | C22 | C23 | C24 | 42.0(3)    |
| C2 | C1  | C12 | C13 |     | -14.8(4) | C22 | C23 | C24 | C15 | -22.0(3)   |
| C2 | C3  | C4  | C5  |     | -0.8(4)  | C22 | C23 | C24 | C25 | 157.3(2)   |
| C2 | C7  | C8  | C9  |     | 41.8(3)  | C23 | C24 | C25 | N2  | -176.2(2)  |
| C3 | C2  | C7  | C6  |     | 3.0(3)   | C23 | C24 | C25 | C26 | 4.1(4)     |
| C3 | C2  | C7  | C8  | -   | 177.7(2) | C24 | C15 | C16 | C17 | -160.3(2)  |
| C3 | C4  | C5  | C6  |     | 0.8(4)   | C24 | C15 | C16 | C21 | 14.1(3)    |
| C4 | C5  | C6  | C7  |     | 1.2(4)   | C24 | C25 | C26 | C27 | 5.1(4)     |
| C5 | C6  | C7  | C2  |     | -3.1(4)  | C25 | N2  | C14 | C13 | 177.5(2)   |
| C5 | C6  | C7  | C8  |     | 177.7(2) | C25 | N2  | C14 | C15 | -0.2(2)    |
| C6 | C7  | C8  | C9  | -   | 138.9(2) | C25 | N2  | B1  | F1  | -54.0(3)   |

## Table 6 Torsion Angles for YT-2.

| Α   | В   | С     | D       | Angle/°    | A   | B   | С   | D       | Angle/°     |
|-----|-----|-------|---------|------------|-----|-----|-----|---------|-------------|
| C7  | C2  | C3    | C4      | -1.1(3)    | C25 | N2  | B1  | F2      | 66.1(3)     |
| C7  | C8  | C9    | C10     | -51.3(3)   | C25 | N2  | B1  | N1      | -173.73(19) |
| C8  | C9  | C10   | C1      | 26.3(3)    | C25 | C26 | C27 | 7 C28   | 179.9(2)    |
| C8  | C9  | C10   | C11     | -150.1(2)  | C26 | C27 | C28 | 8 C 2 9 | 0.2(4)      |
| С9  | C10 | C11   | N1      | 173.0(2)   | C26 | C27 | C28 | 3C33    | -176.7(2)   |
| С9  | C10 | C11   | C36     | -10.3(4)   | C27 | C28 | C29 | OC30    | -175.4(2)   |
| C10 | C1  | C2    | C3      | 149.1(2)   | C27 | C28 | C33 | 3 C32   | 177.8(3)    |
| C10 | C1  | C2    | C7      | -25.1(3)   | C28 | C29 | C30 | )C31    | -2.5(4)     |
| C10 | C1  | C12   | 2N1     | -3.6(2)    | C29 | C28 | C33 | 3 C32   | 0.7(4)      |
| C10 | C1  | C12   | 2 C 1 3 | 170.3(2)   | C29 | C30 | C31 | N4      | -177.8(2)   |
| C10 | C11 | C36   | 5C37    | -8.3(4)    | C29 | C30 | C31 | C32     | 1.1(4)      |
| C11 | N1  | C12   | 2 C1    | 1.3(2)     | C30 | C31 | C32 | 2 C33   | 1.1(4)      |
| C11 | N1  | C12   | 2 C 1 3 | -173.4(2)  | C31 | C32 | C33 | 8 C28   | -2.0(4)     |
| C11 | N1  | B1    | F1      | 53.3(3)    | C33 | C28 | C29 | OC30    | 1.6(4)      |
| C11 | N1  | B1    | F2      | -66.7(3)   | C34 | N4  | C31 | C30     | -18.2(4)    |
| C11 | N1  | B1    | N2      | 173.1(2)   | C34 | N4  | C31 | C32     | 162.9(3)    |
| C11 | C36 | 5C37  | 7 C38   | -177.5(2)  | C35 | N4  | C31 | C30     | 173.6(2)    |
| C12 | N1  | C11   | C10     | 1.5(3)     | C35 | N4  | C31 | C32     | -5.4(4)     |
| C12 | N1  | C11   | C36     | -175.5(2)  | C36 | C37 | C38 | 8C39    | 4.7(4)      |
| C12 | N1  | B1    | F1      | -127.0(2)  | C36 | C37 | C38 | 3C43    | -174.7(2)   |
| C12 | N1  | B1    | F2      | 113.0(2)   | C37 | C38 | C39 | 0C40    | -178.7(2)   |
| C12 | N1  | B1    | N2      | -7.2(3)    | C37 | C38 | C43 | 3 C42   | 178.9(2)    |
| C12 | C1  | C2    | C3      | -25.2(4)   | C38 | C39 | C40 | C41     | 0.7(4)      |
| C12 | C1  | C2    | C7      | 160.7(2)   | C39 | C38 | C43 | 3 C42   | -0.6(4)     |
| C12 | C1  | C10   | ) C9    | -172.8(2)  | C39 | C40 | C41 | N3      | 178.4(2)    |
| C12 | C1  | C10   | C11     | 4.5(3)     | C39 | C40 | C41 | C42     | -2.3(4)     |
| C12 | C13 | C14   | N2      | -0.6(3)    | C40 | C41 | C42 | 2 C43   | 2.5(4)      |
| C12 | C13 | C14   | C15     | 176.4(2)   | C41 | C42 | C43 | 8 C38   | -1.0(4)     |
| C13 | C14 | C15   | 5C16    | 7.5(4)     | C43 | C38 | C39 | 0C40    | 0.8(4)      |
| C13 | C14 | C15   | 5 C24   | -175.1(2)  | C44 | N3  | C41 | C40     | 164.3(2)    |
| C14 | N2  | C25   | 5 C24   | -1.8(2)    | C44 | N3  | C41 | C42     | -14.9(4)    |
| C14 | N2  | C25   | 5 C26   | 177.89(19) | C45 | N3  | C41 | C40     | 0.6(4)      |
| C14 | N2  | B1    | F1      | 123.9(2)   | C45 | N3  | C41 | C42     | -178.6(2)   |
| C14 | N2  | B1    | F2      | -116.0(2)  | B1  | N1  | C11 | C10     | -178.7(2)   |
| C14 | N2  | B1    | N1      | 4.1(3)     | B1  | N1  | C11 | C36     | 4.3(3)      |
| C14 | C15 | 5C16  | 5C17    | 16.8(4)    | B1  | N1  | C12 | 2C1     | -178.5(2)   |
| C14 | C15 | C16   | 5 C21   | -168.8(2)  | B1  | N1  | C12 | 2 C13   | 6.9(3)      |
| C14 | C15 | 5 C24 | C23     | 176.15(19) | B1  | N2  | C14 | C13     | -0.7(3)     |

## Table 6 Torsion Angles for YT-2.

| Α   | В   | С   | D   | Angle/°   | Α  | B  | С   | D   | Angle/°   |
|-----|-----|-----|-----|-----------|----|----|-----|-----|-----------|
| C14 | C15 | C24 | C25 | -3.3(2)   | B1 | N2 | C14 | C15 | -178.4(2) |
| C15 | C16 | C17 | C18 | 175.7(2)  | B1 | N2 | C25 | C24 | 176.3(2)  |
| C15 | C16 | C21 | C20 | -175.4(2) | B1 | N2 | C25 | C26 | -4.0(3)   |

Table 7 Hydrogen Atom Coordinates (Å×10<sup>4</sup>) and Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for YT-2.

| Atom | x       | У        | Z        | U(eq) |
|------|---------|----------|----------|-------|
| H3   | 8242.12 | 1472.27  | 4583.85  | 32    |
| H4   | 9100.87 | 1376.4   | 3554.69  | 36    |
| Н5   | 7767.14 | 1951.78  | 2709.01  | 40    |
| H6   | 5627.13 | 2626.94  | 2890.21  | 37    |
| H8A  | 3168.6  | 2758.57  | 4007.82  | 37    |
| H8B  | 4233.96 | 3214.42  | 3655.21  | 37    |
| H9A  | 6047.66 | 3459.38  | 4632.86  | 33    |
| H9B  | 4009.04 | 3475.13  | 4769.35  | 33    |
| H13  | 6450.72 | 1082.01  | 5289.68  | 28    |
| H17  | 7751.19 | 288.08   | 5310.99  | 38    |
| H18  | 8489.89 | -549.26  | 4816.98  | 44    |
| H19  | 7924.83 | -1423.98 | 5279.95  | 44    |
| H20  | 6604.86 | -1450.83 | 6222.42  | 40    |
| H22A | 5636    | -986.85  | 7143.2   | 41    |
| H22B | 4057.01 | -614.05  | 6777.39  | 41    |
| H23A | 4926.7  | -116.7   | 7705.4   | 33    |
| H23B | 7013.45 | -224.14  | 7681.62  | 33    |
| H26  | 5368.95 | 1587.65  | 7955.54  | 31    |
| H27  | 5774.99 | 496.53   | 8446.13  | 37    |
| H29  | 4917.3  | 1943.86  | 8876.3   | 35    |
| H30  | 4813.33 | 2291.2   | 9900.64  | 37    |
| H32  | 5428.75 | 696.63   | 10619.62 | 47    |
| H33  | 5718.94 | 366.19   | 9598.8   | 47    |
| H34A | 6306.97 | 2472.2   | 11009.54 | 69    |
| H34B | 5195.81 | 2406.33  | 11596.05 | 69    |
| H34C | 4181.12 | 2553.17  | 10898.72 | 69    |
| H35A | 4021.94 | 1061.57  | 11415.37 | 72    |
| H35B | 4527.86 | 1568.89  | 11900.96 | 72    |
| H35C | 6076.34 | 1198.04  | 11667.68 | 72    |
| H36  | 4796.62 | 3130.64  | 6708.18  | 31    |

| Atom | x       | У       | z       | U(eq) |
|------|---------|---------|---------|-------|
| H37  | 5086.06 | 3872.46 | 5699.53 | 35    |
| H39  | 4726.61 | 3846.99 | 7412.04 | 34    |
| H40  | 4308.14 | 4613.57 | 8053.01 | 33    |
| H42  | 4214.11 | 5647.08 | 6494.32 | 44    |
| H43  | 4620.71 | 4872.47 | 5860.76 | 42    |
| H44A | 5355.42 | 6310.83 | 7429.16 | 58    |
| H44B | 3789.63 | 6533.16 | 7800.69 | 58    |
| H44C | 3330.57 | 6316.26 | 7079.72 | 58    |
| H45A | 2985.23 | 5309.64 | 8482.51 | 54    |
| H45B | 3196.31 | 5972.29 | 8563.98 | 54    |
| H45C | 4933.39 | 5581.11 | 8648.31 | 54    |
|      |         |         |         |       |

Table 7 Hydrogen Atom Coordinates (Å×10<sup>4</sup>) and Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for YT-2.

#### Experimental

Single crystals of  $C_{45}H_{41}BF_2N_4$  [YT-2] were []. A suitable crystal was selected and [] on a **SuperNova, Dual, Cu at zero, AtlasS2** diffractometer. The crystal was kept at 170.00(10) K during data collection.

## 5. CheckCIF of BBDP

# checkCIF/PLATON report

Structure factors have been supplied for datablock(s) yt-2

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

## Datablock: yt-2

| Bond precision:                      | C-C = 0.0031 A             | Wavelength=                    | =1.54184                 |
|--------------------------------------|----------------------------|--------------------------------|--------------------------|
| Cell:                                | a=7.3953(3)<br>alpha=90    | b=23.4385(8)<br>beta=98.181(3) | c=20.7039(7)<br>gamma=90 |
| Temperature:                         | 170 K                      |                                | 5                        |
|                                      | Calculated                 | Reported                       |                          |
| Volume                               | 3552.2(2)                  | 3552.2(2)                      |                          |
| Space group                          | P 21/n                     | P 1 21/n 1                     | 1                        |
| Hall group                           | -P 2yn                     | -P 2yn                         |                          |
| Moiety formula                       | C45 H41 B F2 N4            | C45 H41 B                      | F2 N4                    |
| Sum formula                          | C45 H41 B F2 N4            | C45 H41 B                      | F2 N4                    |
| Mr                                   | 686.63                     | 686.63                         |                          |
| Dx,g cm-3                            | 1.284                      | 1.284                          |                          |
| Z                                    | 4                          | 4                              |                          |
| Mu (mm-1)                            | 0.653                      | 0.653                          |                          |
| F000                                 | 1448.0                     | 1448.0                         |                          |
| F000′                                | 1452.13                    |                                |                          |
| h,k,lmax                             | 9,29,25                    | 8,29,25                        |                          |
| Nref                                 | 7197                       | 6949                           |                          |
| Tmin, Tmax                           | 0.913,0.937                | 0.193,1.00                     | 00                       |
| Tmin'                                | 0.913                      |                                |                          |
| Correction metho<br>AbsCorr = MULTI- | d= # Reported T L:<br>SCAN | imits: Tmin=0.193 Tm           | ax=1.000                 |
| Data completenes                     | s= 0.966                   | Theta(max) = 73.920            | )                        |
| R(reflections)=                      | 0.0640( 4926)              |                                | wR2(reflections) =       |
| 990 - 9                              | Nnor-                      | 73                             | 0.1//8( 0949)            |
| 5 - 0.900                            | npar= 4                    | 15                             |                          |

| The following ALERTS were generated. Each ALERT has the format<br>test-name_ALERT_alert-type_alert-level.<br>Click on the hyperlinks for more details of the test.                                                                                                                                                                                                                                                                                                                                             |                                                                     |    |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----|--|--|--|--|--|--|
| <ul> <li>Alert level C</li> <li>PLAT906_ALERT_3_C Large K Value in the Analysis of Variance 3.239 Check</li> <li>PLAT911_ALERT_3_C Missing FCF Refl Between Thmin &amp; STh/L= 0.600 9 Report</li> </ul>                                                                                                                                                                                                                                                                                                       |                                                                     |    |  |  |  |  |  |  |
| Alert level GPLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600PLAT933_ALERT_2_G Number of OMIT Records in Embedded .res File3 NotePLAT941_ALERT_3_G Average HKL Measurement MultiplicityPLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.1 Info                                                                                                                                                                                                                               |                                                                     |    |  |  |  |  |  |  |
| <pre>0 ALERT level A = Most likely a serious problem - resolve or expl<br/>0 ALERT level B = A potentially serious problem, consider careful<br/>2 ALERT level C = Check. Ensure it is not caused by an omission of<br/>4 ALERT level G = General information/check it is not something u<br/>0 ALERT type 1 CIF construction/syntax error, inconsistent or mis<br/>2 ALERT type 2 Indicator that the structure model may be wrong or<br/>3 ALERT type 3 Indicator that the structure quality may be low</pre> | ain<br>.ly<br>pr oversigh<br>.nexpected<br>sing data<br>: deficient | nt |  |  |  |  |  |  |

1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

