Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2022

Amphiphilic silicones to mitigate lens epithelial cell growth on

intraocular lenses

Alec C. Marmo,^a J Jesus Rodriguez Cruz,^b Jackson H. Pickett,^b Lucas R. Lott,^b Dustin S. Theibert,^c Heather L.

Chandler,^c and Melissa A. Grunlan^{*a, b, d}

- a. Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA.
- b. Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
- c. College of Optometry, The Ohio State University, Columbus, OH 43210, USA.
- d. Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.

Electronic Supplementary Information:

Figure S1. ¹H NMR of HDMS₀ (CDCl₃; δ , ppm): 0.05-0.10 (m, 6H, SiC*H*₃), 0.19 (d, J = 2.8 Hz, 6H, OSi[C*H*₃]₂H), 0.47-0.55 (m, 2H, SiC*H*₂CH₂CH₂), 1.56-1.64 (m, 2H, SiCH₂C*H*₂CH₂), 3.38 (s, 3H, OC*H*₃), 3.39-3.44 (t, J = 6.9 Hz, 2H, SiCH₂C*H*₂C*H*₂), 3.52-3.70 (m, 34H, C*H*₂C*H*₂O), 4.65-4.75 (m, 1H, Si*H*).

Figure S2. ¹H NMR of HDMS₁₃ (CDCl₃; δ , ppm): 0.05-0.10 (m, 84H, SiCH₃), 0.19 (d, J = 2.8 Hz, 6H, OSi[CH₃]₂H), 0.47-0.55 (m, 2H, SiCH₂CH₂CH₂), 1.56-1.64 (m, 2H, SiCH₂CH₂CH₂), 3.38 (s, 3H, OCH₃), 3.39-3.44 (t, J = 6.9 Hz, 2H, SiCH₂CH₂CH₂), 3.52-3.70 (m, 34H, CH₂CH₂O), 4.65-4.75 (m, 1H, SiH).

Figure S3. ¹H NMR of HDMS₃₀ (CDCl3; δ , ppm): 0.05-0.10 (m, 186H, SiCH₃), 0.19 (d, J = 2.8 Hz, 6H, OSi[CH₃]₂H), 0.47-0.55 (m, 2H, SiCH₂CH₂CH₂), 1.56-1.64 (m, 2H, SiCH₂CH₂CH₂), 3.38 (s, 3H, OCH₃), 3.39-3.44 (t, J = 6.9 Hz, 2H, SiCH₂CH₂CH₂CH₂), 3.52-3.70 (m, 34H, CH₂CH₂O), 4.65-4.75 (m, 1H, SiH).

	Concentration (µmol/g)	Sol Content (Wt. %)
MED-6020		$\textbf{3.85} \pm \textbf{0.69}$
HDMS ₀		
	5	$\textbf{3.75} \pm \textbf{1.60}$
	10	3.65 ± 1.13
	15	$\textbf{4.03} \pm \textbf{0.50}$
	20	$\textbf{4.21} \pm \textbf{0.92}$
	25	$\textbf{3.88} \pm \textbf{1.85}$
HDMS ₁₃		
	5	4.34 ± 1.21
	10	5.15 ± 0.63
	15	4.22 ± 1.19
	20	$\textbf{4.76} \pm \textbf{0.62}$
	25	4.31 ± 0.53
HDMS ₃₀		
	5	$\textbf{4.09} \pm \textbf{0.60}$
	10	$\textbf{4.67} \pm \textbf{0.53}$
	15	5.39 ± 0.69
	20	$\boldsymbol{5.02 \pm 0.62}$
	25	5.18 ± 0.13

Table S1. Sol contents of unmodified silicone (MED-6020) and silicones modified with SMAs.

Figure S4. ATR-FTIR spectra of unmodified silicone (MED-6020) and silicones modified with HDMS₀ at all concentrations. Color gradient (top of legend) refers to concentration of HDMS₀ (μ mol/g) added to silicone.

Figure S5. ATR-FTIR spectra of unmodified silicone (MED-6020) and silicones modified with HDMS₀ at all concentrations. Color gradient (top of legend) refers to concentration of HDMS₀ (μ mol/g) added to silicone. The modified silicone spectra lacked the characteristic Si-H peak at 2280-2080 cm⁻¹, indicating complete hydrosilylation.

Figure S6. ATR-FTIR spectra of unmodified silicone (MED-6020) and silicones modified with HDMS₀ at all concentrations. Color gradient (top of legend) refers to concentration HDMS₀ (μ mol/g) added to silicone. Characteristic Si-CH₃ stretching peak at 842 cm⁻¹ decreased with increasing concentration of HDMS₀.

Figure S7. ATR-FTIR spectra of unmodified silicone (MED-6020) and silicones modified with HDMS₁₃ at all concentrations. Color gradient (top of legend) refers to concentration of HDMS₁₃ (μ mol/g) added to silicone.

Figure S8. ATR-FTIR spectra of unmodified silicone (MED-6020) and silicones modified with HDMS₁₃ at all concentrations. Color gradient (top of legend) refers to concentration (μ mol/g) added to silicone. The modified silicone spectra lacked the characteristic Si-H peak at 2280-2080 cm⁻¹, indicating complete hydrosilylation.

Figure S9. ATR-FTIR spectra of unmodified silicone (MED-6020) and silicones modified with HDMS₁₃ at all concentrations. Color gradient (top of legend) refers to concentration HDMS₁₃ (μ mol/g) added to silicone. Characteristic Si-CH₃ stretching peak at 842 cm⁻¹ decreased with increasing concentration of HDMS₁₃.

Figure S10. ATR-FTIR spectra of unmodified silicone (MED-6020) and silicones modified with HDMS₃₀ at all concentrations. Color gradient (top of legend) refers to concentration of HDMS₃₀ (μ mol/g) added to silicone.

Figure S11. ATR-FTIR spectra of unmodified silicone (MED-6020) and silicones modified with HDMS₃₀ at all concentrations. Color gradient (top of legend) refers to concentration of HDMS₃₀ (μ mol/g) added to silicone. The modified silicone spectra lacked the characteristic Si-H peak at 2280-2080 cm⁻¹, indicating complete hydrosilylation.

Figure S12. ATR-FTIR spectra of unmodified silicone (MED-6020) and silicones modified with HDMS₃₀ at all concentrations. Color gradient (top of legend) refers to concentration HDMS₃₀ (μ mol/g) added to silicone. Characteristic Si-CH₃ stretching peak at 842 cm⁻¹ decreased with increasing concentration of HDMS₃₀.

	Concentration (µmol/g)	Mass Loss (Wt. %)
MED-6020		0.02 ± 0.08
HDMS ₀		
	5	0.03 ± 0.08
	10	0.19 ± 0.18
	15	0.15 ± 0.13
	20	0.14 ± 0.15
	25	0.00 ± 0.15
HDMS ₁₃		
	5	0.04 ± 0.08
	10	0.10 ± 0.09
	15	0.13 ± 0.15
	20	0.02 ± 0.09
	25	0.09 ± 0.11
HDMS ₃₀		
	5	0.03 ± 0.10
	10	0.14 ± 0.14
	15	0.20 ± 0.13
	20	0.28 ± 0.16
	25	0.41 ± 0.19

Table S2. Mass loss following aqueous equilibration for unmodified silicone (MED-6020) and silicones modified with SMAs.

	Concentration (µmol/g)	Water Uptake (Wt. %)
MED-6020		0.02 ± 0.02
HDMS ₀		
	5	0.07 ± 0.01
	10	0.02 ± 0.01
	15	0.02 ± 0.02
	20	0.05 ± 0.03
	25	0.05 ± 0.07
HDMS ₁₃		
	5	0.06 ± 0.03
	10	0.03 ± 0.04
	15	0.01 ± 0.01
	20	0.01 ± 0.01
	25	0.01 ± 0.01
HDMS ₃₀		
	5	0.01 ± 0.01
	10	0.02 ± 0.02
	15	0.00 ± 0.00
	20	0.00 ± 0.00
	25	0.01 ± 0.01

Table S3. Water uptake following aqueous equilibration for unmodified silicone (MED-6020) and silicones modified with SMAs.

	Concentration (µmol/g)	t = 0 min	t = 1 min	t = 2 min	t = 3 min
MED-6020		$119.1^\circ\pm7.8^\circ$	$117.1^\circ\pm7.8^\circ$	$116.3^\circ\pm6.8^\circ$	$115.5^\circ\pm6.9^\circ$
HDMS ₀					
	5	$103.8^\circ\pm 6.9^\circ$	$100.4^\circ\pm5.2^\circ$	$96.3^\circ\pm5.5^\circ$	$92.7^\circ\pm5.0^\circ$
	10	$96.5^\circ\pm10.6^\circ$	$88.8^\circ\pm4.6^\circ$	$84.7^\circ\pm4.4^\circ$	$81.4^\circ\pm4.5^\circ$
	15	$89.4^\circ\pm 6.3^\circ$	$78.7^\circ\pm5.8^\circ$	$76.4^\circ\pm5.3^\circ$	$74.4^\circ\pm5.3^\circ$
	20	$66.6^\circ\pm5.5^\circ$	$57.0^\circ\pm5.8^\circ$	$54.7^\circ\pm5.9^\circ$	$51.6^\circ\pm6.6^\circ$
	25	$67.0^\circ\pm1.9^\circ$	$57.2^\circ\pm2.4^\circ$	$55.8^\circ\pm3.1^\circ$	$54.9^\circ\pm2.1^\circ$
HDMS ₁₃					
	5	$115.5^\circ\pm4.2^\circ$	$114.5^\circ\pm4.2^\circ$	$113.5^\circ\pm4.2^\circ$	$108.3^\circ\pm7.3^\circ$
	10	$115.1^\circ\pm5.7^\circ$	$108.6^\circ\pm10.4^\circ$	$78.9^\circ\pm14.3^\circ$	$62.7^\circ\pm13.3^\circ$
	15	$112.9^\circ\pm9.5^\circ$	$97.4^\circ\pm10.4^\circ$	$65.2^\circ\pm9.3^\circ$	$51.1^\circ\pm 6.5^\circ$
	20	$75.3^\circ\pm14.9^\circ$	$25.2^\circ\pm10.8^\circ$	$18.1^\circ\pm7.0^\circ$	$13.9^\circ\pm4.5^\circ$
	25	$72.6^\circ\pm26.3^\circ$	$25.8^\circ\pm11.4^\circ$	$20.9^\circ\pm8.9^\circ$	$18.7^\circ\pm7.3^\circ$
HDMS ₃₀					
	5	$111.9^\circ\pm5.4^\circ$	$100.0^\circ\pm18.2^\circ$	$70.7^\circ\pm21.2^\circ$	$52.3^\circ\pm17.2^\circ$
	10	$109.2^\circ\pm5.1^\circ$	$51.8^\circ\pm22.0^\circ$	$30.5^\circ\pm12.2^\circ$	$22.4^\circ\pm8.1^\circ$
	15	$112.6^\circ\pm 6.9^\circ$	$56.5^\circ\pm 6.6^\circ$	$33.6^\circ\pm4.6^\circ$	$22.8^\circ\pm5.0^\circ$
	20	$115.6^\circ\pm5.9^\circ$	$30.6^\circ\pm8.9^\circ$	$16.5^\circ\pm3.9^\circ$	$12.2^\circ\pm2.7^\circ$
	25	$72.9^\circ\pm28.1^\circ$	$14.2^\circ\pm4.0^\circ$	$12.6^\circ\pm3.1^\circ$	$11.8^\circ\pm2.6^\circ$

Table S4. Per **Figure 2a**, following air equilibration, static contact angle (DI water) (θ_{static}) values for unmodified silicone (MED-6020) and silicones modified with SMAs.

	Concentration (µmol/g)	$t = 0 \min$	t = 1 min	t = 2 min	t = 3 min
MED-6020		$118.4^\circ\pm8.7^\circ$	$116.5^\circ\pm5.4^\circ$	$115.3^\circ\pm5.4^\circ$	$114.2^\circ\pm5.6^\circ$
HDMS ₀					
	5	$119.0^\circ\pm 6.0^\circ$	$113.6^\circ\pm3.1^\circ$	$112.5^\circ\pm3.1^\circ$	$111.7^\circ\pm3.2^\circ$
	10	$121.6^\circ\pm3.0^\circ$	$113.3^\circ\pm1.7^\circ$	$112.3^\circ\pm1.7^\circ$	$111.4^\circ\pm1.8^\circ$
	15	$118.3^\circ\pm3.8^\circ$	$111.8^\circ\pm1.4^\circ$	$110.9^\circ\pm1.5^\circ$	$110.1^\circ\pm1.5^\circ$
	20	$116.3^\circ\pm3.1^\circ$	$110.3^\circ\pm2.2^\circ$	$109.3^\circ\pm2.2^\circ$	$108.4^\circ\pm2.1^\circ$
	25	$116.4^\circ\pm4.3^\circ$	$110.2^\circ\pm1.8^\circ$	$109.4^\circ\pm1.8^\circ$	$108.6^\circ\pm1.8^\circ$
HDMS ₁₃					
	5	$123.9^\circ\pm4.9^\circ$	$115.0^\circ\pm1.3^\circ$	$112.1^\circ\pm1.9^\circ$	$102.7^\circ\pm1.9^\circ$
	10	$126.9^\circ\pm4.3^\circ$	$113.0^\circ\pm3.3^\circ$	$97.0^\circ\pm6.2^\circ$	$79.5^\circ\pm9.4^\circ$
	15	$117.9^\circ\pm3.4^\circ$	$97.1^\circ\pm19.6^\circ$	$73.2^\circ\pm22.0^\circ$	$55.8^\circ\pm19.2^\circ$
	20	$107.7^\circ\pm21.3^\circ$	$73.1^\circ\pm32.8^\circ$	$43.5^\circ\pm21.0^\circ$	$33.0^\circ\pm15.5^\circ$
	25	$108.6^\circ\pm15.9^\circ$	$46.9^\circ\pm24.2^\circ$	$27.3^\circ\pm9.9^\circ$	$23.4^\circ\pm 6.9^\circ$
HDMS ₃₀					
	5	$118.2^\circ\pm5.5^\circ$	$109.7^\circ\pm4.5^\circ$	$101.7^\circ\pm4.0^\circ$	$97.2^\circ\pm4.7^\circ$
	10	$111.0^\circ\pm7.0^\circ$	$96.7^\circ\pm9.1^\circ$	$84.4^\circ\pm9.5^\circ$	$70.3^\circ\pm10.5^\circ$
	15	$99.1^\circ\pm12.5^\circ$	$77.8^\circ\pm10.3^\circ$	$66.1^\circ\pm12.5^\circ$	$56.3^\circ\pm13.3^\circ$
	20	$98.8^\circ\pm11.7^\circ$	$81.5^\circ\pm4.3^\circ$	$68.6^\circ\pm 6.8^\circ$	$58.4^\circ\pm9.3^\circ$
	25	$95.2^\circ\pm8.9^\circ$	$70.1^\circ\pm20.6^\circ$	$59.3^\circ\pm16.8^\circ$	$50.2^\circ\pm15.0^\circ$

Table S5. Per **Figure 2b**, following aqueous equilibration, static contact angle (DI water) values for unmodified silicone (MED-6020) and silicones modified with SMAs.

	Concentration (µmol/g)	t = 3 min Air Equilibration	t = 3 min Aq. Equilibration
MED-6020		$115.5^\circ\pm 6.9^\circ$	$114.2^\circ\pm5.6^\circ$
HDMS ₀			
	5	$92.7^\circ\pm5.0^\circ$	$111.7^\circ \pm 3.2^\circ$
	10	$81.4^\circ\pm4.5^\circ$	$111.4^\circ\pm1.8^\circ$
	15	$74.4^\circ\pm5.3^\circ$	$110.1^\circ\pm1.5^\circ$
	20	$51.6^\circ\pm6.6^\circ$	$108.4^\circ\pm2.1^\circ$
	25	$54.9^\circ\pm2.1^\circ$	$108.6^\circ\pm1.8^\circ$
HDMS ₁₃			
	5	$108.3^\circ\pm7.3^\circ$	$102.7^\circ\pm1.9^\circ$
	10	$62.7^\circ\pm13.3^\circ$	$79.5^\circ\pm9.4^\circ$
	15	$51.1^\circ\pm 6.5^\circ$	$55.8^\circ\pm19.2^\circ$
	20	$13.9^\circ\pm4.5^\circ$	$33.0^\circ\pm15.5^\circ$
	25	$18.7^\circ\pm7.3^\circ$	$23.4^\circ\pm 6.9^\circ$
HDMS ₃₀			
	5	$52.3^\circ\pm17.2^\circ$	$97.2^\circ\pm4.7^\circ$
	10	$22.4^\circ\pm8.1^\circ$	$70.3^\circ\pm10.5^\circ$
	15	$22.8^\circ\pm5.0^\circ$	$56.3^\circ\pm13.3^\circ$
	20	$12.2^\circ\pm2.7^\circ$	$58.4^\circ\pm9.3^\circ$
	25	$11.8^{\circ} \pm 2.6^{\circ}$	$50.2^\circ\pm15.0^\circ$

Table S6. Comparison of static contact angle (DI water) (t = 3 min) values for air and aqueous equilibrated unmodified silicone (MED-6020) and silicones modified with SMAs.

Figure S13. % Transmittance of unmodified silicone (MED-6020) and silicones modified with SMAs after air equilibration. Color gradients refer to concentration of HDMS₀, HDMS₁₃, or HDMS₃₀ (μ mol/g) added to silicone. All formulations except for those modified with HDMS₀ exhibited greater % transmittance versus MED-6020.

	Concentration (µmol/g)	Air Equilibration (% Transmittance)	Aq. Equilibration (%Transmittance)
MED-6020		85.5 ± 0.4	90.4 ± 1.4
HDMS ₀			
	5	80.9 ± 4.6	88.4 ± 0.9
	10	81.8 ± 6.0	86.5 ± 3.5
	15	81.0 ± 11.0	71.6 ± 3.2
	20	89.5 ± 1.7	74.3 ± 3.3
	25	87.6 ± 1.3	40.1 ± 5.7
HDMS ₁₃			
	5	88.0 ± 3.6	91.3 ± 0.3
	10	87.2 ± 2.4	90.8 ± 0.2
	15	87.1 ± 1.9	90.3 ± 0.9
	20	90.4 ± 2.3	89.1 ± 1.1
	25	91.3 ± 0.7	89.0 ± 0.3
HDMS ₃₀			
	5	88.0 ± 2.9	90.9 ± 0.3
	10	86.7 ± 2.8	90.7 ± 0.3
	15	88.9 ± 3.5	90.4 ± 0.4
	20	88.7 ± 3.6	89.7 ± 0.2
	25	86.7 ± 5.3	88.2 ± 1.1

Table S7. Per **Figures 3** and **S13**, % transmittance (at 550 nm) of unmodified silicone (MED-6020) and silicones modified with SMAs after air and aqueous equilibration.

	Concentration (µmol/g)	Air Equilibration (MPa)	Aq. Equilibration (MPa)
MED-6020		0.94 ± 0.06	1.02 ± 0.10
HDMS ₀			
	5	0.89 ± 0.04	0.97 ± 0.08
	10	0.95 ± 0.10	0.86 ± 0.06
	15	0.95 ± 0.07	0.95 ± 0.08
	20	0.93 ± 0.05	0.94 ± 0.07
	25	0.90 ± 0.04	0.79 ± 0.03
HDMS ₁₃			
	5	1.08 ± 0.12	0.95 ± 0.04
	10	1.12 ± 0.05	0.86 ± 0.09
	15	1.04 ± 0.06	0.89 ± 0.04
	20	0.97 ± 0.04	0.95 ± 0.07
	25	1.07 ± 0.04	0.82 ± 0.08
HDMS ₃₀			
	5	0.90 ± 0.06	0.84 ± 0.09
	10	1.03 ± 0.04	0.80 ± 0.12
	15	0.94 ± 0.04	0.88 ± 0.11
	20	0.84 ± 0.06	0.88 ± 0.06
	25	0.89 ± 0.16	0.81 ± 0.06

Table S8. Per Figure 4, modulus of unmodified silicone (MED-6020) and silicones modified with SMAs after air and aqueous equilibration.

Figure S14. Strength of unmodified silicone (MED-6020) and silicones modified with SMAs after air and aqueous equilibration. Statistical analysis (p < 0.05); "ns": not significant.

Table S9. Per Figure S14,	strength of unmodified silicone (MED-6020) and silicones modi	fied
with SMAs after air and aq	ueous equilibration.	

	Concentration (µmol/g)	Air Equilibration (MPa)	Aq. Equilibration (MPa)
MED-6020		3.42 ± 0.30	3.99 ± 0.28
HDMS ₀			
	5	3.50 ± 0.17	3.86 ± 0.35
	10	3.27 ± 0.40	3.33 ± 0.55
	15	3.37 ± 0.28	3.41 ± 0.35
	20	3.22 ± 0.14	3.49 ± 0.23
	25	3.09 ± 0.13	2.98 ± 0.17
HDMS ₁₃			
	5	3.42 ± 0.13	3.35 ± 0.32
	10	3.42 ± 0.18	3.42 ± 0.28
	15	3.62 ± 0.20	3.42 ± 0.39
	20	3.60 ± 0.15	3.69 ± 0.33
	25	3.13 ± 0.22	2.84 ± 0.57
HDMS ₃₀			
	5	3.17 ± 0.61	3.52 ± 0.27
	10	3.45 ± 0.31	3.26 ± 0.40
	15	3.52 ± 0.32	3.37 ± 0.38
	20	3.23 ± 0.28	3.26 ± 0.07
	25	3.08 ± 0.40	2.94 ± 0.24

Figure S15. % Strain at break of unmodified silicone (MED-6020) and silicones modified with SMAs after air and aqueous equilibration. *p < 0.05: MED-6020 v. HDMS₀ @ 5 μ mol/g after air equilibration; MED-6020 v. HDMS₁₃ @ 20 μ mol/g after aqueous equilibration.

	Concentration (µmol/g)	Air Equilibration (% Strain)	Aq. Equilibration (% Strain)
MED-6020		198.3 ± 38.7	255.1 ± 32.7
HDMS ₀			
	5	276.4 ± 20.6	266.0 ± 40.4
	10	226.6 ± 35.8	246.8 ± 53.4
	15	248.8 ± 45.8	250.6 ± 49.1
	20	245.7 ± 31.4	264.8 ± 23.3
	25	216.0 ± 24.5	258.2 ± 29.8
HDMS ₁₃			
	5	162.8 ± 19.2	203.1 ± 38.1
	10	189.2 ± 23.6	250.5 ± 38.2
	15	236.6 ± 42.8	252.1 ± 42.0
	20	269.5 ± 29.9	272.0 ± 21.5
	25	173.4 ± 32.0	209.4 ± 60.1
HDMS ₃₀			
	5	211.5 ± 70.9	264.0 ± 26.3
	10	204.7 ± 44.4	241.0 ± 14.7
	15	256.5 ± 32.5	221.8 ± 36.2
	20	245.8 ± 48.0	224.4 ± 7.8
	25	206.0 ± 34.6	198.1 ± 29.1

Table S10. Per **Figure S15**, % strain at break of unmodified silicone (MED-6020) and silicones modified with SMAs after air and aqueous equilibration

		LDH Release (A.U.)
Glass	Positive control	1.72 ± 0.07
Laminin	Positive control	1.75 ± 0.04
X-100	Negative control	2.29 ± 0.16
MED-6020	Unmodified silicone	1.69 ± 0.04
HDMS ₀	25 µmol/g	1.75 ± 0.05
HDMS ₁₃	25 μmol/g	1.70 ± 0.06
HDMS ₃₀	25 µmol/g	1.75 ± 0.02

 Table S11. Per Figure 5a, LDH release values.

Table S12. Per Figure 5b and c, cell count/field values.

		Cell Count/Field
Glass	Positive control	305 ± 52
Laminin	Positive control	315 ± 51
MED-6020	Unmodified silicone	458 ± 78
HDMS ₀	25 μmol/g	353 ± 103
HDMS ₁₃	25 μmol/g	263 ± 75
HDMS ₃₀	25 μmol/g	132 ± 44