Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Dual Crosslinking Hydrogels with Tunable Injectability and Stability for Bone Repair

Wenlin Chu a, Xiang Ke a, Zhiyun Dong a, Jing Xiea, Jun Luo *a and Jianshu Li*a, b, c

- ^{a.} College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
- b. State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- ^{c.} Med-X Center for Materials, Sichuan University, Chengdu, 610041, China.

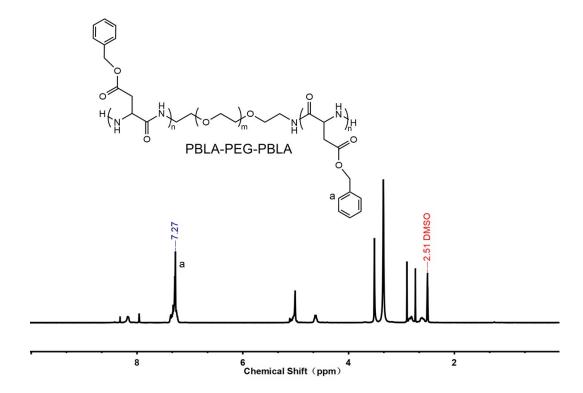


Fig. S1 1 H NMR spectra of PBLA-PEG-PBLA in DMSO-d $_6$.

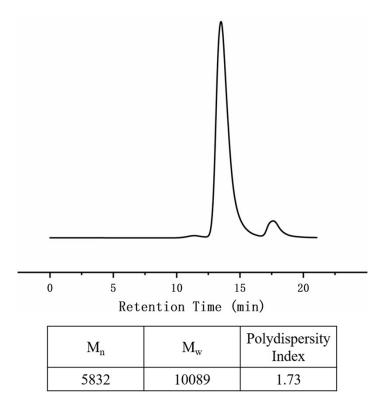


Fig. S2 GPC trace of PAsp-PEG-PAsp (Mn=5832, PDI: 1.73).

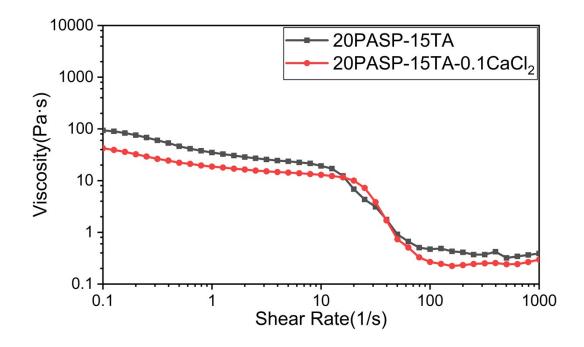


Fig. S3 Viscosity measuring of the 20 wt% PTA hydrogels with and without immersing in the $0.1M\ \text{CaCl}_2$ solution.

Table S1 The Results of ICP-OES measuring the mass fraction of Ca²⁺ in hydrogels.

Sample	Quality (mg)	Volume (mL)	Coefficient of dilution	Instrument reading (mg/L)	Mass fraction	Mean mass fraction
1	32.6	10	50	0.8041	1.2333%	
2	25.9	10	50	0.7873	1.5199%	1.4252%
3	29.1	10	50	0.8860	1.5223%	

Introduction: The final content of Ca elements, mass fraction= Instrument reading* Coefficient of dilution* Volume/ Quality.