Electronic Supplementary Information

A Dual-Response Fluorescent Probe for Simultaneous Monitoring Polarity and ATP During Autophagy

Wen-Li Jiang, ^a Zhi-Qing Wang, ^a Zhi-Ke Tan, ^a Guo-Jiang Mao, ^b Junjie Fei, ^a Chun-Yan Li*^a

^{*a*} Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China.

^b Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, PR China.

*Corresponding Author. E-mail: lichunyan79@sina.com.

Table of contents

1. Characterization of Lyso-NRB	S3
2. Spectroscopic response of Lyso-NRB to polarity and ATP	S5
3. Biological assays	

1. Characterization of Lyso-NRB.

Fig. S1. ¹H NMR spectra of compound Lyso-NRB in CDCl₃.

Fig. S2. ¹³C NMR spectra of compound Lyso-NRB in CDCl₃.

Fig. S3. HRMS spectra of compound Lyso-NRB.

2. Spectroscopic response of Lyso-NRB to polarity and ATP.

	• • •	λ_{em}	Δλ	Dielectric	Refractive	
Solvents	$\lambda_{abs}(nm)$	(nm)	(nm)	Constant (ϵ)	Index (n)	Δf
Toluene	399	493	94	2.37	1.497	0.0123
1,4-dioxane	401	508	107	2.21	1.422	0.0205
Trichloromethane	404	527	123	4.81	1.446	0.1483
THF	406	538	132	7.58	1.407	0.2096
DCM	412	544	132	9.08	1.424	0.2183
DMSO	412	540	128	48.9	1.477	0.2645
Ethanol	412	544	132	24.3	1.361	0.2886
ACN	414	539	125	37.5	1.346	0.3047
Methanol	415	537	122	33.6	1.329	0.3091
DMF	416	537	121	37.6	1.333	0.3097
Water	418	638	220	80.4	1.340	0.3174

Table S1. Spectral properties of Lyso-NRB in various solvents

The dielectric constant data of the solvents were measured at 25 °C. The magnitude of polarity can be calculated by substituting into Lippert-Mataga equation.

$$f(\varepsilon) = (\varepsilon - 1) / (2\varepsilon + 1)$$
$$f(n^2) = (n^2 - 1) / (2n^2 + 1)$$
$$\Delta f = f(\varepsilon) - f(n^2)$$

The ε is dielectric constant, n is refractive index, Δf is polarity values.

Fig. S4. The absorption spectra of Lyso-NRB (10 μ M) in different solvents.

Fig. S5. The absorption spectra of Lyso-NRB (10 μ M) upon the addition of different water/1,4-dioxane solvent mixtures (water from 10% to 80%).

Fig. S6. The fluorescence spectra of Lyso-NRB (10 μ M) in methanol-glycerol system under different viscosity (0.60 cP to 100 cP). THF and methanol have almost the same viscosity (0.53 cP vs 0.60 cP) but different polarity (0.2096 vs 0.3091). $\lambda_{ex} = 400$ nm.

Fig. S7. Fluorescence spectra of Lyso-NRB (10 μ M) in different H₂O/1,4-dioxane mixture

with different pH values. λ_{ex}	= 400	nm
--	-------	----

Fig. S8. Fluorescence spectra of Lyso-NRB (10 μM) for various analytes (100 μM). 1: blank, 2: Zn²⁺, 3: Mg²⁺, 4: Ca²⁺, 5: Na⁺, 6: K⁺, 7: NO, 8: ONOO⁻, 9: H₂O₂, 10: ClO⁻, 11: H₂S, 12: SO₂, 13: GSH, 14: Cys, 15: Hcy, 16: ¹O₂, 17: [.]HO, 18: DNase (5.0 KU/L), 19: BSA (20 μM), 20: 1,4-dioxane. $\lambda_{ex} = 400$ nm.

Fig. S9. HOMO and LUMO of Lyso-Nap by DFT calculations at the base level of

B3LYP/6-311G	via	Gaussian	09	program.
--------------	-----	----------	----	----------

Fig. S10. Fluorescence spectra of Lyso-NRB (10 μ M) upon the addition of different

concentrations of ATP (0, 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 mM). $\lambda_{ex} = 400$ nm.

Fig. S11. Fluorescence spectra of Lyso-NRB (10 μM) toward various analytes (10 mM). 1: blank, 2: GSH, 3: Cys, 4: Hcy, 5: H₂O₂, 6: NO, 7: H₂S, 8: K⁺, 9: Ca²⁺, 10: Na⁺, 11: Mg²⁺, 12: Al³⁺, 13: P₂O₇⁴⁻, 14: H₂PO₄⁻, 15: PO₄³⁻, 16: CTP, 17: GTP, 18: AMP, 19: ADP, 20: ¹O₂, 21: 'HO, 22: ONOO⁻, 23: ClO⁻, 24: ATP. $\lambda_{ex} = 550$ nm.

Fig. S12. Effect of pH on the fluorescence intensity of Lyso-NRB (10 μ M) before and after the reaction with ATP (10 mM). $\lambda_{ex} = 550$ nm.

Fig. S13. Time-dependent fluorescence intensity of Lyso-NRB (10 μ M) in the absence / prescence of ATP (0, 0.5, 1, 5, 10 mM). $\lambda_{ex} = 550$ nm.

Fig. S14. Partial ¹³C NMR spectra of ATP, Lyso-NRB and Lyso-NRB+ATP. NMR solvent: 10 % D_2O in d₆-DMSO.

Fig. S15. ³¹P NMR spectra of ATP and Lyso-NRB+ATP. NMR solvent: 10 % D₂O in d₆-

DMSO.

Fig. S16. Mass spectra of Lyso-NRB reacted with ATP.

3. Biological assays.

Fig. S17. MTT assay for estimating cells viability (%) in HepG2 cells treated with various concentrations of Lyso-NRB (0-30 μ M) after 24 h incubation.

Fig. S18. Fluorescence images of polarity in HepG2 cells. (A) Confocal fluorescence images of HepG2 cells stained with Lyso-NRB (10 μ M) in the presence of DMSO (10 μ L) at different times. (B) Relative fluorescence intensity quantified from the images in A. Scale bar: 20 μ m. Green channel: $\lambda_{ex} = 405$ nm, $\lambda_{em} = 430-530$ nm.

Fig. S19. Fluorescence images of ATP in HepG2 cells. (A) Confocal fluorescence images of HepG2 cells stained with Lyso-NRB (10 μ M), and then treated with apyrase (0.5 U/mL) for 0, 10, 20, 30 min. After that, 10 mM ATP was added for another 30 min. (B) Relative fluorescence intensity quantified from the images in A. Scale bar: 20 μ m. Red channel: $\lambda_{ex} = 560$ nm, $\lambda_{em} = 570-670$ nm.

Fig. S20. Fluorescence images of polarity and ATP induced by different concentrations of H_2O_2 stimulation in HepG2 cells. (A) First-Fourth column: the cells were pretreated with H_2O_2 (0, 50, 100, 200 μ M), and then cultured with Lyso-NRB (10 μ M). Fifth column: the cells were pretreated with PMA (1 μ g/mL), and then cultured with Lyso-NRB (10 μ M). Sixth column: the cells were pretreated with NAC (1 mM), treated with PMA (1 μ g/mL), and then cultured with Lyso-NRB (10 μ M). Sixth column: the cells were pretreated with NAC (1 mM), treated with PMA (1 μ g/mL), and then cultured with Lyso-NRB (10 μ M). (B) Relative fluorescence intensity quantified from the images in A. Scale bar is 20 μ m. Green channel: $\lambda_{ex} = 405$ nm, $\lambda_{em} = 430-530$ nm; Red channel: $\lambda_{ex} = 560$ nm, $\lambda_{em} = 570-670$ nm.

Fig. S21. Fluorescence images of polarity and ATP induced by H₂O₂ stimulation in zebrafish. (A) First-Fourth column: the zebrafish were pretreated with H₂O₂ (0, 50, 100, 200 μ M), and then cultured with Lyso-NRB (10 μ M). Fifth column: the zebrafish were pretreated with PMA (1 μ g/mL), and then cultured with Lyso-NRB (10 μ M). Sixth column: the zebrafish were pretreated with NAC (1 mM), treated with PMA (1 μ g/mL), and then cultured with PMA (1 μ g/mL), and then cultured with PMA (1 μ g/mL), and then cultured with Lyso-NRB (10 μ M). Sixth column: the zebrafish were pretreated with NAC (1 mM), treated with PMA (1 μ g/mL), and then cultured with Lyso-NRB (10 μ M). (B) Relative fluorescence intensity quantified from the images in A. Scale bar is 200 μ m. Green channel: $\lambda_{ex} = 405$ nm, $\lambda_{em} = 430-530$ nm; Red channel: $\lambda_{ex} = 560$ nm, $\lambda_{em} = 570-670$ nm.