Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2022

Supporting information

Biomimetic FeCo@PDA nanozyme platform with Fenton catalytic activity as efficient antibacterial agent

Fei Kuang[†]^a, Yingjie Chen[†]^b, Wei Shan[†]^b, Yonghai Li^c, Xichang Bao^c, Xiang Gao^{*}^a, Dong An^{*}^b, Meng Qiu^{*}^b

^a College of Life Sciences, Qingdao University, No.308 Ningxia Road, Qingdao 266071, Shandong, China

^b Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China.

^c CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China

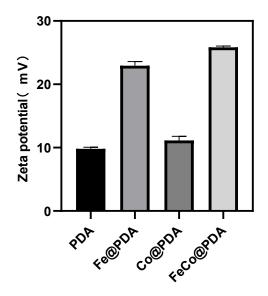


Figure S1. Zeta potential of PDA, Fe@PDA, Co@PDA and FeCo@PDA