Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2022

Supplementary Material

Metal-phenolic networks as tunable spore coat mimetics

Pris Wasuwanich,^{1‡} Gang Fan,^{1‡} Benjamin Burke¹, and Ariel L. Furst^{1,2,*}

¹Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA

²Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA

⁺These authors contributed equally

*Correspondence: afurst@mit.edu

Table of Contents

1.	Experimental Section2
	1.1 Chemicals and Reagents
	1.2 Analysis and Measurement
	1.3 Bacterial Strain and Culture
	1.4 MPN Encapsulation
	1.5 Preparation of Lyophilized Cells
	1.6 Bacterial Growth/Viability Measurements
2.	Supplemental Figures
3.	Supplemental References10

1. Experimental section:

1.1 Chemicals and Reagents. All chemicals were reagent grade and used without further purification unless otherwise stated. Tannic acid (99%), gallic acid monohydrate (98%), L-ascorbic acid (99%), iron (III) chloride (FeCl₃, 97%), aluminum chloride (99.9%), zinc sulfate heptahydrate (99%), manganese sulfate monohydrate (99%), 3-(N-morpholino) propanesulfonic acid (MOPS, 99.5%), sodium hydroxide (98%), hydrochloride acid (37%), acetone (99.5%), D-(+)-trehalose dihydrate (99%), sodium phosphate dibasic (99%), sodium phosphate monobasic (99%), and citric acid (99.5%) were purchased from Sigma-Aldrich. Absolute ethanol (molecular biology grade), sodium chloride, and agar (granulated) were purchased from Fisher BioReagents. Nutrient broth (microbiologically tested) powder was purchased from Fluka. Green tea extract (50% EGCG) was purchased from Bulk Supplements. Ultrapure water was generated from an ELGA PURELAB Quest UV (Model number: PQDIUVM1NSP). LIVE/DEADTM BacLightTM Bacterial Viability Kit was purchased from ThermoFisher. Nutrient broth liquid media were prepared with 8 g of nutrient broth powder in 1L of nanopure water (adjust pH to 7.0 with sodium hydroxide) and used after autoclaving (20 min, 121° C). Nutrient agar plates were prepared on Petri dishes with 20 mL of nutrient agar solution (8 g of nutrient broth powder, and 15 g of agar in 1L of nanopure water, Adjusting pH to 7.0).

1.2 Analysis and Measurement. Optical density or absorbance was measured with a NanoDropTM One Microvolume UV-Vis Spectrophotometer (Thermo Scientific, USA) or a Biotek synergy mx microplate reader (BioTek Instruments, USA). The cells were observed with a Revolve Fluorescence Microscope (Echo, USA).

1.3 Bacterial Strains and Culture. Strain (*Bacillus subtilis* (Ehrenberg) Cohn (ATCC 6051 LOT: 70044049) was used in this study. Cells were prepared for MPN coating as follows: *B. subtilis* strains (20% glycerol) stored at -80 °C were streaked onto nutrient agar plates and aerobically kept for ~18h at 30 °C. Single colonies were to inoculate nutrient broth. The cultures were kept for ~18 h at 30 °C and washed with nanopure water followed by centrifugation (6000 x g for 20 min, three times). After the final wash, cells were concentrated to a suspension (OD₆₀₀ of 4.0, 4x stock) and were used immediately.

1.4 MPN Encapsulation. MPNs were coated on the surface of *B. subtilis* as previously published.¹ For different MPNs, equivalent amounts of tannic acid (1.6 mg mL⁻¹), gallic acid (1.5 mg mL⁻¹) or epigallocatechin gallate (2.7 mg mL⁻¹, 50% from tea extract) and an equal volume freshly-made aqueous solution of iron chloride (0.24 mg mL⁻¹), zinc sulfate heptahydrate (0.42 mg mL⁻¹), aluminum chloride (0.19 mg mL⁻¹), or manganese sulfate monohydrate (0.72 mg ml⁻¹) were applied for encapsulation.

1.5 Preparation of Lyophilized Cells. The lyophilization of uncoated and MPN-coated *B. subtilus* were prepared according to previous protocol.¹ Before use, the lyophilized cells were reconstituted in sterile 10 mM *L*-ascorbic acid solution or nutrient broth as necessary.

1.6 Bacterial Growth/Viability Assessment. Growth assays were performed in sterile 96-well plates, and OD₆₀₀ was monitored by plate reader. Bacterial viability was determined by live/dead bacterial viability assay. Images were captured using fluorescence microscope for live (green fluorescence: λ_{ex} = 470/40 nm; λ_{em} = 525/50 nm) and dead cells (red fluorescence: λ_{ex} =560/40 nm, λ_{em} = 630/75 nm) with a 60X oil objective. Cell counts to determine the viable cells percentage were quantified by ImageJ from five randomly-chosen fields of view.

2. Supplemental Figures:

Figure 1. UV–vis spectra of metal-phenolic networks. UV-Vis absorbance of (a) Al^{III}-TA, Al^{III}-GA, and Al^{III}-EGCG complexes in MOPS buffer (10 mM, pH 7.5), (b) Al^{III}-TA, Al^{III}-GA, and Al^{III}-EGCG complexes after addition of silica particles (1mg/mL); (c) Mn^{II}-TA, Mn^{II}-GA, and Mn^{II}-EGCG complexes in MOPS buffer (10 mM, pH 7.5), (d) Mn^{II}-TA, Mn^{II}-GA, and Mn^{II}-EGCG complexes after addition of silica particles (1 mg/mL); (e) Zn^{II}-TA, Zn^{II}-GA, and Zn^{II}-EGCG complexes in MOPS buffer (10 mM, pH 7.5), (f) Zn^{II}-TA, Zn^{II}-GA, and Zn^{II}-EGCG complexes after addition of silica particles (1 mg/mL); (e) Zn^{II}-TA, Zn^{II}-GA, and Zn^{II}-EGCG complexes after addition of silica particles (1 mg/mL).

Figure 2. Growth curves monitored at OD₆₀₀ of *B. subtilis* alone and MPN-coated *B. subtilis* ("2X" means coating is repeated twice).

Figure 3. Bacterial viability assessment shows live/dead *B. subtilis* after Fe^{III} -TA encapsulation without addition of MOPS buffer (Viability: 54%). Representative composite images of DIC, green (live) and red (dead) fluorescence channels for *B. subtilis*.

Figure 4. Growth curves monitored at OD_{600} of Fe^{III}-polyphenol-coated and uncoated *B. subtilis* following lyophilization with cryoprotectants (PB: phosphate-buffered saline; PC: phosphate-citrate buffer; cryoprotectant: 0.1 M trehalose). (Shaded region represents error bars represent SD for n=3 replicates)

Figure 5. Growth curves monitored at OD_{600} of metal-GA-coated and uncoated *B. subtilis* following lyophilization with or without cryoprotectants (PB: phosphate-buffered saline; PC: phosphate-citrate buffer; cryoprotectant: 0.1 M trehalose). (Shaded region represents error bars represent SD for n=3 replicates)

Figure 6. Growth curves monitored at OD_{600} of *B. subtilis* alone, with metals (Fe^{III}, Zn^{II}, and Al^{III}) only, with polyphenols (TA, GA) only, and with both (Fe-TA, Fe-GA-MPN-coated) following lyophilization in PC buffer. (Shaded region represents error bars represent SD for n=3 replicates)

Figure 7. Growth curves monitored at OD_{600} of *B. subtilis* alone, with metals (Fe^{III}, Zn^{II}, and Al^{III}) only, with polyphenols (TA, GA) only, and with both (Fe-TA, Fe-GA-MPN-coated) following lyophilization in PC buffer supplement with 0.1 M trehalose. (Shaded region represents error bars represent SD for n=3 replicates)

3. References:

1 G. Fan, P. Wasuwanich, M. R. Rodriguez-Otero and A. L. Furst, J. Am. Chem. Soc., 2022, 144, 2438–2443.