Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Magnetically Controlled Reversible Shape-morphing Microrobots with

Real-time X-ray Imaging for Stomach Cancer Applications

Bobby Aditya Darmawan^{a,b,†}, Dohoon Gong^{b,†}, Hyeon Gyu Park^b, Songah Jeong^c, Gwangjun Go^{a,b}, Seokjae Kim^{a,b}, Kim Tien Nguyen^a, Shirong Zheng^{a,b}, Minghui Nan^{a,b}, Van Du Nguyen^{a,b}, Doyeon Bang^{a,d}, Chang-Sei Kim^{a,b}, Hyungwoo Kim^{c,*}, Jong-Oh Park^{a,b,*} and Eunpyo Choi^{a,b,*}

^aKorea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208 beon-gil, Buk-gu, Gwangju 61011, Korea

^bSchool of Mechanical Engineering, Chonnam National University, 77 Yong-bong-ro, Bukgu, Gwangju 61186, Korea

^cSchool of Polymer Science and Engineering, Chonnam National University, 77 Yongbongro, Buk-gu, Gwangju 61186, Korea

^dCollege of AI Convergence, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Korea

†These authors contributed equally.

*Correspondence to kimhw@jnu.ac.kr (H.K.); jop@kimiro.re.kr (J.O.P.); eunpyochoi@jnu.ac.kr (E.C.)

Supplementary Materials

Table S1. Design parameters of the EMA system.

Figure S1. ¹H NMR spectrum of mTIB.

Figure S2. The optical system used for microrobot fabrication.

Figure S3. Illustration of the chamber, which was fabricated using a three-dimensional printer.

Figure S4. Digital photographs of each material at different pH values (a) Composite resin (b) pHEMA.

Figure S5. Digital photographs of microrobot locomotion in a stomach-like channel.

Movie S1. Shape-morphing under different pH solution in petri dish (scale bar: 4 mm).

Movie S2. Locomotion performance under EMA system in 3D-printed stomach mimicked channel (scale bar: 4 mm).

Movie S3. Locomotion performance under EMA system in pig's stomach (scale bar: 4 mm).

Movie S4. Shape-morphing with pH solution manipulation in pig's stomach (scale bar: 4 mm).

Movie S5. X-ray imaging which integrated with EMA system in pig's stomach (scale bar: 2 mm)

Parameter	Value
Workspace diameter (mm)	40
Distance from end of the coil	
to the center of a workspace	60
(mm)	
Wire diameter (mm)	1.6
Number of turns	1368
Coil inner diameter (mm)	40
Coil outer diameter (mm)	77
Coil length (mm)	210
Core diameter (mm)	40
Core length (mm)	240
Resistance (Ω)	2.2

Table S1. Design parameters of the EMA system.

Fig. S1. ¹H NMR spectrum of mTIB.

Fig. S2. The optical system used for microrobot fabrication.

Fig. S3. Illustration of the chamber, which was fabricated using a three-dimensional printer

Fig. S4. Digital photographs of each material at different pH values (a) Composite resin (b) pHEMA.

Fig. S5. Digital photographs of microrobot locomotion in a stomach-like channel.