Supplementary information for

The DNA-Cu nanocluster and exonuclease I integrated label-free reporting system for CRISPR/Cas12a-based SARS-CoV-2 detection with minimized background signal

Siying Xie^a, Cheng Qin^b, Furong Zhao^a, Zhaoyang Shang^a, Pei Wang^{a,c}, Muhammad

Sohail^{a,c}, Xing Zhang^{a, *}, Bingzhi Li^{a, *}

^a School of Food Science and Pharmaceutical Engineering, Nanjing Normal University,

Nanjing 210023, China

^b School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing 210013, China

° School of Life Sciences, Nanjing Normal University, Nanjing 210023, China

Manuscript prepared for Journal of Materials Chemistry B.

* Corresponding Author:

Bingzhi Li (bingzhili@njnu.edu.cn)

Xing Zhang (zhangxing@njnu.edu.cn)

S1. No.	CONTENT	Page NO.		
Table S1	Oligonucleotides used in this study	S3-S6		
Table S2	The cost analysis of this reporter	S 7		
Table S3	Comparison of our reporter and dual-labeled fluorescence	S 8		
	reporters			
Figure S1	The TEM of synthetic DNA-CuNCs	S9		
Figure S2	Fluorescence intensity of DNA-CuNCs synthesized in	S10		
	different buffer			
Figure S3	The verification feasibility of CRISPR-CNS via	S11		
	fluorescence spectra			
Figure S4	The suitability of ss-target and ds-target for CRISPR-CNS	S12		
	via 15% polyacrylamide gel electrophoresis			
Figure S5	The selectivity of detection with ssDNA S13			

Names	Sequence (from 5' to 3')		
ss-Target	GTTCAATCTGTCAAGCAGCAG		
ds-Target-1	TTTGCTGCTGCTTGACAGATTGAAC		
ds-Target-2	GTTCAATCTGTCAAGCAGCAGCAAA		
cr-RNA	UAAUUUCUACUAAGUGUAGAU <u>CUGCUGCUUGACAGAUUGAAC</u>		
T12	ТТТТТТТТТТТТТ		
T14	ТТТТТТТТТТТТТТТ		
T16	ТТТТТТТТТТТТТТТТТ		
T18	ТТТТТТТТТТТТТТТТТТТ		
T20	ТТТТТТТТТТТТТТТТТТТТТ		
T22	ТТТТТТТТТТТТТТТТТТТТТТТТ		
T24	ТТТТТТТТТТТТТТТТТТТТТТТТТ		
T26	TTTTTTTTTTTTTTTTTTTTTTTTTTTTT		
T28	ТТТТТТТТТТТТТТТТТТТТТТТТТТТТТТТ		
T30	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT		
Т30-6	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTCCCCCC		
Т30-8	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTCCCCCCCC		
T30-10	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTCCCCCCCC		
T30-15	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTCCTCGCTTCCCCTTC		
T30-20	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTCCTCGCTTCCCCTTCTCC		
	TT		
T30-25	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTCCTCGCTTCCCCTTCTCC		
	TTTCATC		
p6	GGGGGG		
p8	GGGGGGGG		
p10	GGGGGGGGGG		
p15	GAAGGGGAAGCGAGG		
p20	CCTCGCTTCCCCTTCTCCTT		

Table S1. Oligonucleotides used in this study

p25	GATGAAAGGAGAAGGGGAAGCGAGG
SM1	GATCAATCTGTCAAGCAGCAG
SM2	GTTCAATCAGTCAAGCAGCAG
DM1	GTTCAATCTGTCAAGCTGCTG
DM2	GATCATTCTGTCAAGCAGCAG
TM1	GATCAATATGTCAAGCTGCAG
SARS-CoV	GTTCAATCTGTCTAGCAGCAA
MERS-CoV	GCATCAGTGGCGCCATCTTCA
SM1-1	GTTCAATCTGTCAAGCAGCAGCAGA
SM1-2	TCTGCTGCTGCTTGACAGATTGAAC
SM2-1	GTTCAATCTGTCAAGCAGCAGCAAT
SM2-2	ATTGCTGCTGCTTGACAGATTGAAC
DM1-1	GTTCAATCTGTCAAGCAGCGCCAAA
DM1-2	TTTGGCGCTGCTTGACAGATTGAAC
DM2-1	GTTCAATCTGTCAAGCAGCAGCATT
DM2-2	AATGCTGCTGCTTGACAGATTGAAC
TM1-1	GTTCAATCTGTCAAGTCACAGCAAA
TM1-2	TTTGCTGTGACTTGACAGATTGAAC
SARS - CoV (1)	GCTATTGCTGCTAGACAGATTGAAC
SARS - CoV (2)	GTTCAATCTGTCTAGCAGCAATAGC
MERS - CoV (1)	TCCATGAAGATGGCGCCACTGATGC
MERS - CoV (2)	GCATCAGTGGCGCCATCTTCATGGA
PCR-F Primer	GGGGAACTTCTCCTGCTAGAAT
PCR-R Primer	CAGACATTTTGCTCTCAAGCTG

N gene atgtctgataatggaccccaaaatcagcgaaatgcaccccgcattacgtttggtggaccctcagattcaact ggcagtaaccagaatggagaacgcagtgggggcgcgatcaaaacaacgtcggccccaaggtttacccaat aatactgcgtcttggttcaccgctctcactcaacatggcaaggaagaccttaaattccctcgaggacaaggc gttccaattaacaccaatagcagtccagatgaccaaattggctactaccgaagagctaccagacgaattcgt ggtggtgacggtaaaatgaaagatctcagtccaagatggtatttctactacctaggaactgggccagaagct E gene atgtactcattcgtttcggaagagagagagagatacgttaatagttaatagcgtacttctttttcttgctttcgtggtattcttgctagttacactagccatccttactgcgcttcgattgtgtgcgtactgctgcaatattgttaacgtgagtcttgtaaaaaccttctttttacgtttactctcgtgttaaaaatctgaattcttctagagttcctgatcttctggtctaaORF1ab ggaag ccaatatggat caagaat cctttggtggtgcatcgtgttgtctgtactgccgttgccacatagat catc(GenBankNO.NC 0 caa at cct a a agg at ttt gt gact ta a a agg ta ag ta t gt a caa at a cct a caa ctt gt g ct a at gaccct gt g45512,13201ggttttacacttaaaaacacagtctgtaccgtctgcggtatgtggaaaggttatggctgtagttgtgatcaact15600) ccgcgaacccatgcttcagtcagctgatgcacaatcgtttttaaacgggtttgcggtgtaagtgcagcccgtcttacaccgtgcggcacaggcactagtactgatgtcgtatacagggcttttgacatctacaatgataaagtagctggttttgctaaattcctaaaaactaattgttgtcgcttccaagaaaaggacgaagatgacaatttaattgattcttactttgtagttaagagacacactttctctaactaccaacatgaagaaacaatttataatttacttaaggattgtccagctgttgctaaacatgacttctttaagtttagaatagacggtgacatggtaccacatatatcacgtcaacgtcttactaa atacaca atggcagacctcgtctatgctttaaggcattttgatgaaggtaattgtgacacattaaaccagatatattacgcgtatacgccaacttaggtgaacgtgtacgccaagctttgttaaaaacagtacaattctgtgatgccatgcgaaatgctggtattgttggtgtactgacattagataatcaagatctcaatggtaactggtatgatttcggtgatttcatacaaaccacgccaggtagtggagttcctgttgtagattcttattattcattgttaatgcc

S5

tatattaaccttgaccagggctttaactgcagagtcacatgttgacactgacttaacaaagccttacattaagtgggatttgttaaaatatgacttcacggaagagggttaaaactctttgaccgttattttaaatattgggatcagacataccacccaa attgtgttaactgtttggatgacagatgcattctgcattgtgcaa actttaatgttttattctcta cagtgttcccacctacaagttttggaccactagtgagaaaaatatttgttgatggtgttccatttgtagtttcaactggataccacttcagagagctaggtgttgtacataatcaggatgtaaacttacatagctctagacttagttttaaggaattacttgtgtatgctgctgaccctgctatgcacgctgcttctggtaatctattactagataaacgcactacgtgcttttcagtagctgcacttactaacaatgttgcttttcaaactgtcaaacccggtaattttaacaaagacttatggtaatgctgctatcagcgattatgactactatcgttataatctaccaacaatgtgtgatatcagacaactactatttgtagttgaagttgttgataagtactttgattgttacgatggtggctgtattaatgctaaccaagtcatcgtcaacaacctagacaaatcagctggttttccatttaataaatggggtaaggctagactttattatgattcaatgagttatgccattagtgcaaagaatagagctcgcaccgtagctggtgtctctatctgtagtactatgaccaatagacctatggtggttggcacaacatgttaaaaactgtttatagtgatgtagaaaaaccctcaccttatgggttgggattatcctaaatgtgatagagccatgcctaacatgcttagaattatggcctcacttgttcttgctcgcaaacatacaacgtgttgtagcttgtcacaccgtttctatagattagctaatgagtgtgctcaagtattgagtgaaatggtcatgtgtggcggttcactatatgttaaaccaggtggaacctcatcaggagatgccacaactgcttatgctaatagtgtttttaacatttgtcaagctgtacggccaatgttaatgcacttttatctactgatggtaacaaaattgccgataagtatgtc

The blue and red bases correspond to crRNA and DNA template in Figure 1, respectively. The green bases represent the mutation in target sequence (SM: singlebase mutation; DM: double-base mutation; TM: triple-base mutation). The yellow background highlights the target nucleic acid sequence in N gene of SARS-CoV-2.

Component	Amount	Cost (\$)	Number of uses	Cost/1000
Component	Amount		number of uses	reactions (\$)
EXO I	20 KU	157	4000	39
T30+20 (DNA)	5 OD	5	500	10
$CuSO_4 \cdot 5H_2O$	500 g	7	3.15E5	0.000175
NaAA	25 g	7	4E7	0.023
	Total c		Total cost per 1000	40.02
			reactions (\$)	49.02

Table S2. The cost analysis of this reporter

reporters							
	Probes	Main components	Cost / 1000 reactions (\$)	Ref.			
1	FQ reporter	5-FAM, 3- BHQ1	220	<i>Biosens. Bioelectron</i> , 2021, 172 , 112766.			
2	G-triplex reporter	5-FAM, 3- TAMRA	88.39	<i>Biosens. Bioelectron</i> , 2021, 187 , 113292.			
3	dsDNA- reporter	5-FAM, 3- BHQ1	63	ACS Synth. Biol., 2021, 10 , 1785- 1791.			
4	Our reporter	EXO I T30+20 (DNA) CuSO4·5H2O NaAA	49.02	This work			

 Table S3. Comparison of our reporter and dual-labeled fluorescence

Figure S1. The TEM of synthetic DNA-CuNCs. 10 μ M DNA template and 40 mM NaAA were mixed in dark for 2 min in the CRISPR reaction buffer, and then adding 0.4 mM Cu²⁺, forming DNA-CuNCs.

Figure S2. Fluorescence intensity of DNA-CuNCs synthesized in different buffer. Control refer to H_2O . The added volume of each buffer was consistent with CRISPR reaction.

Figure S3. The verification feasibility of CRISPR-CNS via fluorescence spectra.

Fluorescence spectra of the DNA-CuNCs (blue), CRISPR-CNS without target (red) and CRISPR-CNS with target (black).

Figure S4. The suitability of ss-target and ds-target for CRISPR-CNS via 15% polyacrylamide gel electrophoresis.

Figure S5. The selectivity of detection with ssDNA. The ss-Target concentration added for detection was 50 nM, while the concentration of non-target nucleic acids was 500 nM, which was 10-folds ss-Target concentration.