Supporting Information

Au nanoclusters modulated macrophages polarization and synoviocytes apoptosis for enhanced rheumatoid arthritis treatment

Hao Chen^{a, #}, Yongxin Jiang^{a, #}, Tingting Xu^{a, #}, Jiangmei Xu^c, Jun Yu^d, Zhaoyou Chu^a, Yechun Jiang^a, Yongbo Song^{b,*}, Hua Wang^{e,*}, Haisheng Qian^{b,*}

^a School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, P. R. China.

^b School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China.

^c Department of Dermatovenerology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, P. R. China.

^d Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, 230032, China.

^e Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, P. R. China.

These authors contributed equally to this work.

Corresponding Author

Prof. H. S. Qian, *E-mail: <u>shqian@ahmu.edu.cn</u>

Prof. H. Wang, *E-mail: wanghua@ahmu.edu.cn

Prof. Y. B. Song, *E-mail: ybsong860@ahmu.edu.cn

In vitro cell uptake test. Au₂₅-ICG cluster nanoprobes were synthesized based on reported method.¹ RPMs and HFLS were incubated with indocyanine green (ICG)-conjugated gold nanoclusters for 4 h, then the cellular uptake of Au₂₅ nanoclusters were assessed by CLSM (LMS-800, Carl Zeiss).

In vitro ROS assay. The intracellular ROS generation was studied by DCFH-DA. Typically, HFLS was seeded in confocal plates at 1×10^5 cells/mL, and then incubated with Au₂₅ nanoclusters (25 and 50 µg/mL) for 18 h. Subsequently, the cells were stimulated by another 6 h under TNF- α stimulation. After that the DCFH-DA was introduced incubated for 0.5 h to form green fluorescent substance (DCF). Finally, the intracellular green fluorescence was monitored by CLSM.

Cell migration. HFLS were seeded into 6 well plates to grow into a completely confluent monolayer. A linear wound was induced across the middle of each well with a gun head (200μ L). HFLS were subsequently cultured in serum-free medium containing different concentrations of Au₂₅ nanoclusters. The migrated distance in different groups were observed and imaged at 24 h.

Cell invasion assay. HFLS cells were plated in 24-well plates and 2×10^5 cells (100 µL) were added to upper chamber, and complete medium (600 µL) containing 20% FBS containing Au₂₅ nanoclusters (25 and 50 µg/mL) was added to the lower chamber. HFLS were allowed to invade for 24 hours. The noninvaded cells on the upper surface of the membrane were removed by wiping with a cotton swab. Invaded cells were fixed in 4% paraformaldehyde, and stained with 0.5% crystal violet. The quantification of invading cells was assessed by counting three random fields (magnification 40x).

Cellular apoptosis assay and mitochondria membrane potential. HFLS were activated by TNF- α (40 ng/mL) for 6 h and seeded into 6-well plates (2 × 10⁵ cells/well) or confocal dishes (3×10⁵ cells/dish). Subsequently, 25µg/mL and 50µg/mL Au₂₅ nanoclusters were added for 18 h incubation. Then, the apoptosis rate was determined by flow cytometry (NAVIOS, BECKMAN) according to an Annexin V-FITC apoptosis detection kit. The potential of the mitochondria membranes was tested by CLSM using JC-1 as a specific probe.

Immunofluorescence and TUNEL staining. After deparaffinization and rehydration, the sections of synovium were incubated with primary antibodies at 4 °C overnight, and then incubated with fluorescent-labelled secondary antibodies for 30 min. Another part was staining with TUNEL. After being counterstained with DAPI, digital fluorescence photographs were captured using a fluorescent microscope.

References

1. X. Jiang, B. Du and J. Zheng, Nat. Nanotechnol., 2019, 14, 874-882.

Fig. S1 Relative cell cytocompatibility analysis of RAW264.7 cell lines exposed with various concentrations of Au_{25} nanoclusters (n = 8, mean ± SEM).

Fig. S2 mRNA levels of TNF- α , iNOS and IL-6 in RAW264.7 cells were evaluated by western blot analysis (n = 3, mean ± SEM). *p<0.05, ***p<0.001, ****p<0.0001 vs. LPS-treated group, LPS: lipopolysaccharide.

Fig. S3 CLSM images of HFLS after 4 h incubation with Au_{25} nanoclusters (scale bar: 50 μ m).

Fig. S4 Au_{25} nanoclusters inhibited HFLS migration. Representative photomicrographs of HFLS migration following inhibition with Au_{25} nanoclusters (25 and 50µg/mL) for 24 h (magnification×20).

Fig. S5 Au_{25} nanoclusters inhibited HFLS invasion. Representative photomicrographs of HFLS invasion following inhibition with Au_{25} nanoclusters (25 and 50µg/mL) for 24 h (n=3, magnification×40).

Fig. S6 Effect of different concentrations of Au_{25} nanoclusters (25,50,100 µg/mL) on TrxR activity in the cellular system was studied using thioredoxin reductase assay Kit.

Fig. S7 The mitochondrial membrane potential was monitored by staining with the fluorescent dye JC-1 (scale bar: $50 \ \mu m$).

Fig. S8 UV–vis absorption of the Au_{25} (black lines), MTX (red lines) and Au_{25} +MTX (blue lines) at room temperature. Digital photos from left to right are Au_{25} , MTX and Au_{25} +MTX in deionized water.

Fig. S9 Body weights of various treated rats as a function of time. Data are presented as mean \pm S.D (n=7).

Fig. S10 Spleen index of various treated rats. Data are presented as mean \pm S.D (n=7).

Fig. S11 Au₂₅-ICG fluorescence images showed the biodistribution in normal rat and AA rat with a unilateral inflamed joint (A, heart; B, liver; C, spleen; D, lung; E, kidney arthritic joint) at 8 h after tail vein injection.

Fig. S12 Histopathology evaluation of ankle joints was identified using H&E (scale bars: 100 μ m).

Fig. S13 Mankin score with different treatment groups.

Fig. S14 Immunofluorescence analysis of HIF-1 α in the synovium after treatment (scale

bars: 100 µm).

Fig. S15 TUNEL staining of synovium in different treatment groups on the 32th day

(scale bars: 100 μ m).

Fig. S16 Distribution of Au in main organs following multiple injection of Au_{25} nanoclusters at different timepoints.

Fig. S17 Serum biochemical analysis results after 32 days treatments (n = 3). Data are presented as mean \pm S.D. AST: aspartate transaminase; ALT: alanine aminotransferase; AKP: alkaline phosphatase; γ -GT: γ -glutamyl transpeptidase; CRE: creatinine; BUN: blood urea nitrogen.

Fig. S18 H&E-stained images of major organ slices of rats from different groups after

32 days treatment (scale bars: 50 $\mu m).$

Gene	Amplicon Size	Forward primer	Reverse primer
	(bp)	(5'→3')	(5'→3')
β-actin	120	AGTGTGACGTTGACATCCGT	TGCTAGGAGCCAGAGCAGTA
IL-6	88	CCCACCAAGAACGATAGTCAA	ATCAGTCCCAAGAAGGCAAC
TNF-a	133	GACAGTGACCTGGACTGTGG	TGAGACAGAGGCAACCTGAC
iNOS	94	GGAGCGAGTTGTGGATTGTC	CAGCCTCTTGTCTTTGACCC
CD206	110	AGTGGCTTTGGTTGAACGAC	CCAAAGGCCCGAAGATGAAG
IL-1β	98	GAAGAAGAGCCCATCCTCTG	TCATCTCGGAGCCTGTAGTG
Arg-1	134	CTCAAAGGGACAGCCACGAG	TAGGGATGTCAGCAAAGGGC

Table S1. Primers used in qRT-PCR.

Table S2. global assessment.

content	score	symptoms
ears	0	no swelling and nodules
	1	one ear has swelling and nodules
	2	both ears have swelling and nodules
nose	0	no swelling in the tissue
	1	swelling in the tissue
tail	0	no swelling and nodules
	1	swelling and nodules
front paws	0	no swelling
	1	swelling in the left front foot claw
	1	swelling in the right front foot claws
hind paws	0	no swelling
	1	swelling in the left hind foot claws
	1	swelling in the right hind foot claws

score	symptoms	
0	no swelling	
1	mild swelling in the ankle joint	
2	mild swelling in the ankle to metatarsal joint or metacarpal joint	
3	moderate swelling in the ankle to metatarsal joint or metacarpal joint	
4	severe swelling of the entire paw	

Table S3. arthritis index score.