Effect of extracellular matrix proteins on the differentiation of human pluripotent stem cells into mesenchymal stem cells

Zeyu Tian,^{‡a} Chun-Ko Wang,^{‡b} Feng-Ling Lin,^{‡c} Qian Liu,^a Ting Wang,^a Tzu-Cheng Sung,^a Abdullah A. Alarfaj,^d Abdurahman H. Hirad,^d Henry Hsin-Chung Lee,^{*e,f,g} Gwo-Jang Wu,^{*h} Akon Higuchi^{*a,b,i,j}

^aSchool of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China

^bDepartment of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan 32001, Taiwan

^eDepartment of Dermatology, Cathay General Hospital Sijhih Branch, Taipei 22174, Taiwan

^dDepartment of Botany and Microbiology, King Saud University, Riyadh 11451, Saudi Arabia

^eDepartment of Surgery, Cathay General Hospital, Taipei 10630, Taiwan.

^fDepartment of Surgery, Sijhih Cathay General Hospital, New Taipei 22174, Taiwan.

^gGraduate Institute of Translational and Interdisciplinary Medicine, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001 Taiwan

^hGraduate Institute of Medical Sciences and Department of Obstetrics & Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan.

ⁱR&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan

^jDepartment of Reproduction, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan

* Correspondence author.

Department of Surgery, Cathay General Hospital, Taipei 10630, Taiwan.

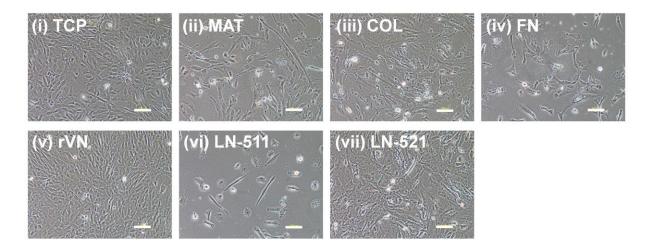
Tel.: +886-2-26482121#7005; fax: +886-2-86462107. E-mail address: <u>hsinchuoff@cgh.org.tw</u> (H.H.C. Lee)

Graduate Institute of Medical Sciences and Department of Obstetrics & Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan

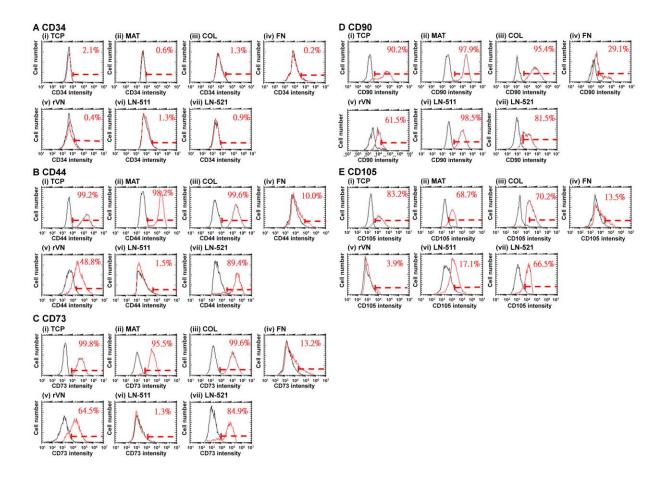
Tel.: +86 577-88068822; fax: +86 086-577-88832083. E-mail address: gwojang@yahoo.com (G.-J. Wu)

Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan 32001, Taiwan & School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China

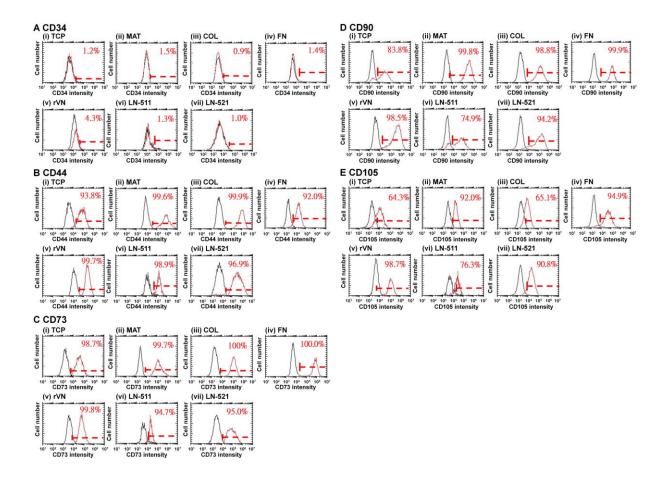
Tel.: +86 577-88068822; fax: +86 086-577-88832083.


E-mail address: higuchi@ncu.edu.tw (A. Higuchi)

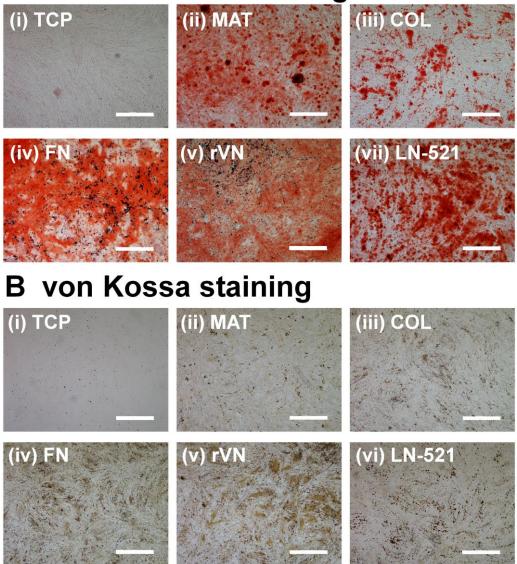
¹These authors contributed equally to this work.


Supplementary Information

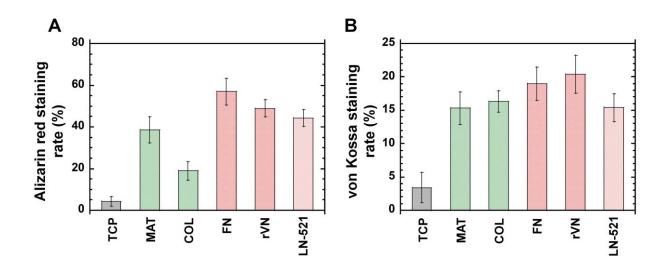
Materials Abbreviation Catalog No. Company ECM MAT 356230 Matrigel Corning (Corning, NY, USA) Recombinant vitronectin rVN A14700 Thermo Fisher Scientific Inc. (Waltham, MA, USA) Collagen type I COL 354231 Corning (Corning, NY, USA) Fibronectin FN 33016-015 Thermo Fisher Scientific Inc. (Waltham, MA, USA) Laminin 511 LN-511 892011 Nippi Inc. (Tokyo, Japan) BLA-LN521-05 Laminin 521 LN-521 Veritas (Tokyo, Japan) Cell culture dishes 6-well polystyrene plate TCP #353046 Corning (Corning, NY, USA) Chemicals Dispase D4693-1G Sigma-Aldrich (St. Louis, MO, USA) Dispase II Trypsin-EDTA (0.25%) Trypsin-EDTA 25200072 Thermo Fisher Scientific Inc. (Waltham, MA, USA) Bone morphogenic protein BMP4 H4916 Sigma-Aldrich (St. Louis, MO, USA) 4 3-(6-Methyl-2-pyridinyl)-N-phenyl-4-(4-quinolinyl)-A83-01 SML0788 Sigma-Aldrich (St. Louis, MO, USA) 1H-pyrazole-1carbothioamide L-ascorbic acid-2-L-ascorbic acid-2-A8960-5G Sigma-Aldrich (St. Louis, MO, USA) phosphate phosphate Dexamethasone DEX D4902-500G Sigma-Aldrich (St. Louis, MO, USA) Cell culture medium and component Essential 8 medium Essential 8 A1517001 Thermo Fisher Scientific Inc. (Waltham, MA, USA) Essential 6 medium A1516401 Thermo Fisher Scientific Inc. (Waltham, MA, USA) Essential 6 DMEM/F12 medium DMEM/F12 11330-057 Thermo Fisher Scientific Inc. (Waltham, MA, USA) α-MEM (Minimum α-MEM 12000022 Thermo Fisher Scientific Inc. (Waltham, MA, USA) Essential Medium) DMEM DMEM D5648 Sigma-Aldrich (St. Louis, MO, USA) Fetal bovine serum FBS PSRPS-FB2 Biological Industries (Kibbutz Beit-Haemek, Israel) Alkaline Phosphatase SensoLyte® pNPP AS-72146 AnaSpec, Inc. (Fremont, CA, USA) Assay Kit Antibodies FITC Mouse Anti-Human Anti-CD34 555821 BD Pharmingen (Franklin Lakes, NJ, USA) antibody **CD34** Anti-CD34 isotype FITC Mouse IgG1 555748 BD Pharmingen (Franklin Lakes, NJ, USA) antibody FITC Mouse Anti-Human Anti-CD44 555478 BD Pharmingen (Franklin Lakes, NJ, USA) **CD44** antibody Anti-CD44 isotype FITC Mouse IgG2b 555742 BD Pharmingen (Franklin Lakes, NJ, USA) antibody PE Mouse Anti-Human Anti-a-actinin 550257 BD Pharmingen (Franklin Lakes, NJ, USA) **CD73** antibody PE Mouse Anti-Human Anti-MLC2v 555596 BD Pharmingen (Franklin Lakes, NJ, USA) CD90 antibody Anti-CD73 PE Mouse IgG1 (CD90) isotype 555749 BD Pharmingen (Franklin Lakes, NJ, USA) antibody PE Mouse Anti-Human Anti-CD105 A07414 Beckman Coulter (Brea, CA, USA) CD105 antibody Anti-CD105 PE Mouse IgG3 RPE 0105-09 SouthernBiotech (Birmingham, AL, USA) isotype antibody


Supplementary Table 1 Materials used in this study.

Supplementary Fig. 1. Differentiation of hiPSCs (H-M5) into hMSCs. Morphology of differentiated cells cultured on TCP dishes (i), MAT-coated dishes (ii), COL-coated TCP dishes (iii), FN-coated TCP dishes (iv), rVN-coated TCP dishes (v), LN-511-coated TCP dishes (vi) and LN-521-coated TCP dishes (vii) on day 7 at passage 10. The scale bar indicates 100 µm.



Supplementary Fig. 2. Flow cytometry histograms showing the expression of hMSC surface markers (CD44, CD70, CD93 and CD105) and a hematopoietic stem cell marker (CD34) on hESC (H9)-derived hMSCs cultured on TCP dishes and ECM-coated dishes at passage 6. (A-E) CD34 (A), CD44 (B), CD73(C), CD90 (D) and CD105 (E) expression on cells cultured on TCP dishes (i), MAT-coated dishes (ii), COL-coated TCP dishes (iii), FN-coated TCP dishes (iv), rVN-coated TCP dishes (v), LN-511-coated TCP dishes (v) and LN-521-coated TCP dishes (vii). The black line illustrated the isotype antibody expression on the cells (negative control). The red line illustrated the expression of each CD marker on the cells.



Supplementary Fig. 3. Flow cytometry histograms showing the expression of hMSC surface markers (CD44, CD70, CD93 and CD105) and a hematopoietic stem cell marker (CD34) on hiPSC (H-M5)-derived hMSCs cultured on TCP dishes and ECM-coated dishes at passage 6. (A-E) CD34 (A), CD44 (B), CD73(C), CD90 (D) and CD105 (E) expression on cells cultured on TCP dishes (i), MAT-coated dishes (ii), COL-coated TCP dishes (iii), FN-coated TCP dishes (iv), rVN-coated TCP dishes (v), LN-511-coated TCP dishes (vi) and LN-521-coated TCP dishes (vii). The black line illustrated the isotype antibody expression on the cells (negative control). The red line illustrated the expression of each CD marker on the cells.

A Alizarin red S staining

Supplementary Fig. 4. Osteogenic differentiation of hiPSC (H-M5)-derived hMSCs on day 28 of differentiation. (A) Micrograph of alizarin red S (calcium deposition)-stained cells cultured on TCP dishes (i), MAT-coated dishes (ii), COL-coated TCP dishes (iii), FN-coated TCP dishes (iv), rVN-coated TCP dishes (v), LN-511-coated TCP dishes (vi) and LN-521-coated TCP dishes (vii). The bar indicates 1000 μ m. (B) Micrograph of von Kossa (calcium phosphate deposition)-stained cells cultured on TCP dishes (i), MAT-coated dishes (ii), COL-coated TCP dishes (iii), FN-coated TCP dishes (vi). The bar indicates 1000 μ m. (B) Micrograph of von Kossa (calcium phosphate deposition)-stained cells cultured on TCP dishes (i), MAT-coated dishes (ii), COL-coated TCP dishes (iii), FN-coated TCP dishes (iv), rVN-coated TCP dishes (v), LN-511-coated TCP dishes (vi) and LN-521-coated TCP dishes (vi). TCP dishes (iv), rVN-coated TCP dishes (v), LN-511-coated TCP dishes (vi) and LN-521-coated TCP dishes (vi). TCP dishes (vi). The bar indicates 1000 μ m.

Supplementary Fig. 5. Osteogenic differentiation of hiPSC (H-M5)-derived hMSCs. (A) The level of osteogenic induction of cells cultured on TCP dishes and ECM-coated dishes was assessed by alizarin red S staining (calcium deposition) on day 28 of differentiation utilizing ImageJ software. (B) The level of osteogenic induction of cells cultured on TCP dishes and ECM-coated dishes was evaluated by von Kossa staining (calcium phosphate deposition) on day 28 of differentiation utilizing ImageJ software.