Supporting Information

"Three-in-One"NanocompositeasMultifunctionalNanozymeforUltrasensitiveRatiometricFluorescenceDetection of Alkaline Phosphatase

Xuemei Li,^a Mengchao Cai,^a, Zhiwei Shen,^a Min Zhang,^{*a}, Zisheng Tang,^{c,e,d,f,g} Shi-Hua Luo,^{*h} and Na Lu^{*a}

^a School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

^bCollege of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

^c Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China

^d College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China

^eNational Center for Stomatology, Shanghai 200011, China

^fNational Clinical Research Center for Oral Diseases, Shanghai 200011, China

^g Shanghai Key Laboratory of Stomatology, Shanghai 200011, China

^h Department of Traumatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China E-mail addresses: zhangmin@sues.edu.cn (M. Zhang), jqab@163.com (S.-H. Luo), nlu2014@163.com (N. Lu).

Table of Contents

Experimental Section
Table S1. Comparison of kinetic parameters of different enzyme-like activitiesS5
Table S2. Comparison of kinetic parameters of catechol oxidase-like activities
Table S3. Comparison of different methods for ALP detection. S7
Table S4. Recovery Analysis of ALP in Human Serum Samples
Figure S1. TEM images of Fe ₃ O ₄ nanoparticles and Fe ₃ O ₄ @MnO ₂ nanocomposites
Figure S2. XPS spectrum of Fef NCs
Figure S3. XPS spectra of Fe 2p for Fef NCsS11
Figure S4. Dependence of OXD-like activities on pH, temperature, and the
concentrations of Fef NCs S12
Figure S5. Dependence of POD-like activities on pH, temperature, and the
concentrations of Fef NCs
Figure S6. H ₂ O ₂ detection based on POD-like activity of Fef NCsS14
Figure S7. H ₂ O ₂ decomposition based on CAT-like activity of Fef NCsS15
Figure S8. Dependence of the CAT-like activity on the concentration of Fef NCs

Figure S9. SOD-like activity of Fef NCs
Figure S10. Dependence of catechol oxidase-like activities of Fef NCs on pH and
temperature
Figure S11. Time-dependent absorbance of aminochrome upon the addition of varying
concentrations of Fef NCs
Figure S12. Steady-state kinetic assays of catechol oxidase-like activities by varying
concentrations of dopamine
Figure S13. The OXD-like activity of Fef CNs was applied to different kinds of
colorimetric substrates
Figure S14. Three-dimensional fluorescence spectra of ARox and CURS22
Figure S15. Ratiometric fluorescence detection of AA by using Fef NCs
Figure S16. Ratiometric fluorescence detection of AA by using Fef NCs
Figure S17. Photograph and SEM images of Fef NCs before and after the ratiometric
fluorescence detection of ALP
REFERENCE

EXPERIMENTAL SECTION

Materials and chemicals. Alkaline phosphatase (ALP) was obtained from Sangon Biotech Co., Ltd. (Shanghai, China). Amplex Red (AR), curcumin (CUR), o-Phenylenediamine (OPD), L-Ascorbic acid 2-phosphate trisodium (AA2P), L-Ascorbic acid (AA), nitroblue tetrazoliun (NBT), methionine, riboflavin, and 30% H₂O₂ were purchased from Shanghai Titan Scientific Co., Ltd. (Shanghai, China). 2,2'-azinobis(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS), 3,3',5,5'-tetramethylbenzidine (TMB) was purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Cerium (III) nitrate hexahydrate (Ce(NO₃)₃·6H₂O), hexamethylenetetraminem (HMT), Potassium permanganate (KMnO₄), sodium acetate trihydrate (NaAc·3H₂O) , ferric chloride hexahydrate (FeCl₃·6H₂O), 3,5-Di-tert-butylcatechol (3,5-DTBC, 98%), and dopamine were purchased from Aladdin (Shanghai, China). All chemicals were used without further purification. Ultrapure water with a resistivity of 18 MΩ·cm⁻¹ was used in the assays.

Catalyst	Enzyme-like	Substrate	K (mM)	$V = (10^{-8} \mathrm{M s^{-1}})$	Reference
Catalyst	Activity	Substrate	\mathbf{K}_{m} (IIIIVI)	V_{max} (10 M S)	Kelefenee
FefNCs	OXD	TMB	0.22	19.6	This work
^{<i>a</i>} CeO ₂ NPs	OXD	TMB	1.50	6.9	1
^b MnO ₂ NSs	OXD	TMB	0.062	425	2
Fef NCs	POD	H_2O_2	0.01	9.34	This work
Fe ₃ O ₄ NPs	POD	H_2O_2	154	9.78	3
^c Fe ₃ O ₄ @C YSNs	POD	H_2O_2	0.27	12.0	4
Fef NCs	CAT	H_2O_2	0.72	210	This work
^d Mnf	CAT	H_2O_2	0.511	12000	5
Pd nanocubes	CAT	H_2O_2	102.4	220	6

Table S1. Comparison of kinetic parameters of different enzyme-like activities.

^{*a*} CeO₂ NPs: CeO₂ nanoparticles; ^{*b*} MnO₂ NSs: MnO₂ nanosheets; ^{*c*} Fe₃O₄@C YSNs: Fe₃O₄@C yolk-shell nanostructures; ^{*d*} Mnf: Mn₃O₄ nanoparticles with flower-like morphology.

CatalystSubstrate K_m (mM) V_{max} (10^{-8} M s^{-1})Reference $P_{Fef NCs}$ 3,5-DTBC0.1185This workDopamine0.6186This work $P_{MOF-818}$ 3,5-DTBC0.813177 CeO_2 3,5-DTBC0.4887 $Pt NPs$ 3,5-DTBC1.26218.27 $Pt NPs$ 3,5-DTBC1.8114717 $Pt NPs$ 3,5-DTBC0.5-8					
Fef NCs $3,5$ -DTBC 0.11 85 This workDopamine 0.61 86 This work $AOF-818$ $3,5$ -DTBC 0.81 317 7 Dopamine 0.48 8 7 CeO2 $3,5$ -DTBC 1.262 18.2 7 Pt NPs $3,5$ -DTBC 1.811 471 7 Catechol oxidase $3,5$ -DTBC 0.5 $ 8$	Catalyst	Substrate	$K_{\rm m}$ (mM)	V _{max} (10 ⁻⁸ M s ⁻¹)	Reference
Dopamine 0.61 86 This work $3,5$ -DTBC 0.81 317 7 MOF-818Dopamine 0.48 8 7 CeO2 $3,5$ -DTBC 1.262 18.2 7 Pt NPs $3,5$ -DTBC 1.811 471 7 Catechol oxidase $3,5$ -DTBC 0.5 $ 8$	Fef NCs	3,5-DTBC	0.11	85	This work
3,5-DTBC 0.81 317 7 MOF-818 Dopamine 0.48 8 7 CeO2 3,5-DTBC 1.262 18.2 7 Pt NPs 3,5-DTBC 1.811 471 7 Catechol oxidase 3,5-DTBC 0.5 - 8		Dopamine	0.61	86	This work
Information Dopamine 0.48 8 7 CeO2 3,5-DTBC 1.262 18.2 7 Pt NPs 3,5-DTBC 1.811 471 7 Catechol oxidase 3,5-DTBC 0.5 - 8	MOF-818	3,5-DTBC	0.81	317	7
CeO2 3,5-DTBC 1.262 18.2 7 Pt NPs 3,5-DTBC 1.811 471 7 Catechol oxidase 3,5-DTBC 0.5 - 8		Dopamine	0.48	8	7
Pt NPs 3,5-DTBC 1.811 471 7 Catechol oxidase 3,5-DTBC 0.5 - 8	CeO ₂	3,5-DTBC	1.262	18.2	7
Catechol oxidase 3,5-DTBC 0.5 - 8	Pt NPs	3,5-DTBC	1.811	471	7
	Catechol oxidase	3,5-DTBC	0.5	-	8

Table S2. Comparison of kinetic parameters of catechol oxidase-like activities.

Sensing system	Method	Linear range (mU/mL)	LOD (mU/mL)	Reference
PDA liposomes	Colorimetry	10-200	2.8	9
^{<i>a</i>} N/S-CDs	Fluorescence	2.5-70	0.396	10
^b Au/LDO	Colorimetry	4-60	1.35	11
Nucleotide coordinated copper	Colorimetry	10-30	0.3	10
ion	Fluorescence	1-30	0.45	12
^c RhB@Alg/Fe ³⁺	Visual detection	1-400	0.37	13
^d AIEgen-peptide conjugate	Fluorescence	1-1000	1.2	14
^e CDs /OPD	Fluorescence	5-350	3.6	15
^f AgNPrs-Cu ²⁺	Distance measurement	5-50, 50-200	5	16
MnO ₂ nanosheets	Fluorescence	0.25-10	0.06	17
dephosphorylation-initiated transcription reaction	Fluorescence	0.05-1	0.02	18
Phenyl phosphate	Electrochemistry	20-1500	3	19
Aminoferrocene labeled ssDNA	Electrochemistry	20-100	1.48	20
Fef NCs	Fluorescence	0.2-0.1	0.19	This work

 Table S3. Comparison of different methods for ALP detection.

^{*a*} N/S-CDs: sulfur co-doped carbon dots; ^{*b*} Au/LDO: Au-decorated CoAl-layered double oxide nanozymes; ^{*c*} RhB@Alg/Fe³⁺: alginate hydrogel crosslinked with Fe³⁺ and rhodamine B (RhB); ^{*d*}AIEgens: aggregation-induced emission luminogens; ^{*e*} CDs /OPD: carbon dots o-phenylenedi-amine; ^{*f*} AgNPrs-Cu²⁺: silver hexagonal nanoprism-Cu²⁺.

No.	Added (mU/mL)	Total detected (mU/mL)	Recovery (%)	RSD (%)
Samples 1	0	0.11		
	0.5	0.63	102%	2.3%
	1	1.10	99%	0.4%
Samples 2	0	0.30		
	0.5	0.77	94.6%	3.3%
	1	1.31	101%	0.7

Table S4. Recovery Analysis of ALP in Human Serum Samples.

Figure S1. TEM images of (A) Fe_3O_4 nanoparticles (NPs) and (B) $Fe_3O_4@MnO_2$ nanocomposites (NCs).

Figure S2. XPS spectrum of Fef NCs.

Figure S3. XPS spectra of Fe 2p for Fef NCs.

Figure S4. Dependence of OXD-like activities on (A) pH, (B) temperature, and (C) the concentrations of Fef NCs.

Figure S5. Dependence of POD-like activities on (A) pH, (B) temperature, and (C) the concentrations of Fef NCs.

Figure S6. H_2O_2 detection based on POD-like activity of Fef NCs. (A) Relationship between the absorbance and the concentrations of H_2O_2 . (B) Linear calibration curve for H_2O_2 detection.

Figure S7. H_2O_2 decomposition based on CAT-like activity of Fef NCs. (A) UV-Vis absorption spectra with increasing H_2O_2 concentrations. (B) Linear relationship between the absorbance at 240 nm and the concentration of H_2O_2 .

Figure S8. Dependence of the CAT-like activity on the concentration of Fef NCs

	а	b	С	d	е	f	g	h	i i
					0				
Riboflavin	-	2-3	-	-	+	+	+	+	+
Methionine	-	+	-		-	+	+	+	+
NBT	_	_	+	_	-	+	+	+	+
Fef NCs	-		-	+		+	+	-	
РВ	+	+	+	+	+	+	+	+	+
Light	+	+	+	+	+	-	+	-	+

Figure S9. SOD-like activity of Fef NCs. Photograph of different reaction systems.

Figure S10. Dependence of catechol oxidase-like activities of Fef NCs on (A) pH and (B) temperature.

Figure S11. Time-dependent absorbance of aminochrome upon the addition of varying concentrations of Fef NCs (From a to g: 1, 5, 10, 20, 30, 40, and 50 μ g/mL).

Figure S12. Steady-state kinetic assays of catechol oxidase-like activities by varying concentrations of dopamine. (A) Michaelis-Menten curve of Fef NCs for Dopamine.(B) The Lineweaver-Burk plot of the double reciprocal of the Michaelis-Menten equation.

Figure S13. The OXD-like activity of Fef CNs was applied to different kinds of colorimetric substrates, including TMB, ABTS, and OPD. (A) UV-Vis absorption spectra of different oxidized substrates in dissolved oxygen in the presence of Fef CNs at room temperature. (B) Photograph of different substrate reaction solutions with varying concentrations of Fef NCs.

Figure S14. Three-dimensional fluorescence spectra of (A) ARox and (B) CUR.

Figure S15. Ratiometric fluorescence detection of AA by using Fef NCs. (A, B) Fluorescence spectra of AR (A) and CUR (B) with different concentrations of AA (From a to h: 0, 0.1, 0.2, 0.4, 0.6, 0.8,1,2,4,6, and 10 μ M). (C) Relationship between the fluorescence ratio (F₅₈₅/F₅₇₅) and the concentrations of AA. (D) Linear calibration curve for AA detection.

Figure S16. Optimization of experimental conditions for ALP detection. (A) Fluorescence response of AR catalyzed by Fef NCs under different pH. (B) Fluorescence response of AR catalyzed by Fef NCs with varying concentration of AA2P. [Fef NCs] = $100 \ \mu$ g/mL, [ALP] = $40 \$ mU/mL.

Figure S17. (A) Photograph of the reaction solutions and (B) SEM images of Fef NCs before (a) and after (b) the ratiometric fluorescence detection of ALP.

References

1 B. Liu, Z. Huang and J. Liu, Nanoscale, 2016, 8, 13562-13567.

2 J. Liu, L. Meng, Z. Fei, P. J. Dyson and L. Zhang, *Biosens. Bioelectron.*, 2018, **121**, 159-165.

3 L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett and X. Yan, *Nat. Nanotechnol.*, 2007, **2**, 577-583.

4 N. Lu, M. Zhang, L. Ding, J. Zheng, C. Zeng, Y. Wen, G. Liu, A. Aldalbahi, J. Shi,S. Song, X. Zuo and L. Wang, *Nanoscale*, 2017, 9, 4508-4515.

5 N. Singh, M. A. Savanur, S. Srivastava, P. D'Silva and G. Mugesh, *Angew. Chem. Int. Ed. Engl.*, 2017, **56**, 14267-14271.

6 C. Ge, G. Fang, X. Shen, Y. Chong, W. G. Wamer, X. Gao, Z. Chai, C. Chen and J.J. Yin, *ACS Nano*, 2016, **10**, 10436-10445.

7 M. Li, J. Chen, W. Wu, Y. Fang and S. Dong, *J. Am. Chem. Soc.*, 2020, **142**, 15569-15574.

8 A. Rompel, H. Fischer, D. Meiwes, K. Büldt-Karentzopoulos, A. Magrini, C. Eicken,C. Gerdemann and B. Krebs, *FEBS Lett.*, 1999, 445, 103-110.

9 D.-E. Wang, S. You, W. Huo, X. Han and H. Xu, Microchimica Acta, 2022, 189, 70.

10 Y. Zhan, S. Yang, L. Chen, Y. Zeng, L. Li, L. Zhenyu, L. Guo and W. Xu, ACS Sustainable Chemistry & Engineering, 2021, **9**.12922–12929.

11 X. Liu, X. Mei, J. Yang and Y. Li, ACS Appl. Mater. Interfaces, 2022, 14, 6985-6993.

12 H. Huang, J. Bai, J. Li, L. Lei, W. Zhang, S. Yan and Y. Li, *J Mater Chem B*, 2019, 7, 6508-6514.

13 L. Gao, Y. Li, Z.-Z. Huang and H. Tan, Anal. Chim. Acta, 2021, 1148, 238193.

14 L. Zhang, Y. Li, G. Mu, L. Yang, C. Ren, Z. Wang, Q. Guo, J. Liu and C. Yang, Anal. Chem., 2022, 94, 2236-2243.

15 Y. Zhu, X. Tong, Q. Wei, G. Cai, Y. Cao, C. Tong, S. Shi and F. Wang, *Biosens*. *Bioelectron.*, 2022, **196**, 113691.

16 K. Phoonsawat, K. Khachornsakkul, N. Ratnarathorn, C. S. Henry and W. Dungchai, *ACS Sens*, 2021, **6**, 3047-3055.

17 R. Wang, Z. Wang, H. Rao, X. Xue, M. Luo, Z. Xue and X. Lu, *Chem. Commun.* (*Camb.*), 2021, **57**, 4444-4447.

18 F. Ma, W.-j. Liu, L. Liang, B. Tang and C.-Y. Zhang, *Chem. Commun. (Camb.)*, 2018, **54**, 2413-2416.

19 L. Sappia, B. Felice, M. A. Sanchez, M. Martí, R. Madrid and M. I. Pividori, *Sens. Actuators B Chem.*, 2019, **281**, 221-228.

20 W. Wang, J. Lu, L. Hao, H. Yang, X. Song and F. Si, *Anal. Bioanal. Chem.*, 2021,413, 1827-1836.