Electronic Supplementary Information

Oxygen-Powered Flower-like FeMo₆@CeO₂ Selfcascade Nanozyme: Turn-on Enhancement Fluorescence Sensor

Zhibo Tong,^a Tong Wang,^b Yunheng Cai,^b Jingquan Sha*^b, Tai Peng*^a

 ^a College of Materials Science and Engineering, Jiamusi University, HeilongJiang, Jiamusi, 154007, P.R. China
 ^b School of Chemistry, Chemical Engineering and Materials, Jining University, Shandong, Qufu 273155, P. R. China
 *Corresponding author: E-mail address: pt@jmsu.edu.cn.

Table of Contents

Section 1. Supporting Figures	2
Section 2. Supporting Tables	10
Section 3. Supporting Schemes	12
References	13

Figure S1. (a) XRD pattern observed for FC-66 in comparison with the prepared $FeMo_6$ as well as the simulated pattern of Ce-Uio-66; (b) combined wires/sticks/polyhedral representation of the asymmetric unit of FC-66; (c) the FT-IR spectra of Ce-Uio-66, FeMo₆ and FC-66; EDS spectrums of (d) FC-66 and (e) FMC-2; (f) full survey scan of XPS spectra for FMC-2, FeMo₆ and CeO₂-Uio, respectively.

Figure S2 Fluorescence curves and optical photographs of FMC-n.

Figure S3 Fluorescence curves and optical photos of FMC-2 under different pH.

Figure S4 Fluorescence curves and optical photos of FMC-2 under different temperatures.

Figure S5 Fluorescence curves and optical photos of FMC-2 under different reaction times.

Figure S6 Fluorescence curves and optical photos of FMC-2 with different feeding dosage.

Figure S7. UV-vis spectra and the corresponding optical photographs of (a) ABTS, ABTS-FMC-2 and ABTS-FMC-2-Cys; (b) TMB, TMB-FMC-2 and TMB-FMC-2-Cys (pH=5.5, 5 min, 25 °C); fluorescence curves and corresponding optical photographs of (c) FMC-2-OPD and CeO₂-Uio-OPD; (d) FMC-2-OPD-H₂O₂ and FeMo₆-OPD-H₂O₂ (pH=5.5, 5 min, 25 °C).

Figure S8. Fluorescence curves and corresponding optical photographs of FMC-2-OPD- O_2 and FC-66-OPD- O_2 .

Figure S9. Steady-state kinetics curves of initial reaction rate (*V*) against varying TMB concentration for FC-66 and FMC-2, Lineweaver-Burk plot of 1/V against $1/C_{TMB}$ for FC-66 and FMC-2.

Figure S10 Fluorescence curves and corresponding optical photographs of FMC-2-OPD-O₂ under the effect of 1 mM p-benzoquinone (BQ) and potassium iodide (KI) quencher-spiked agent.

Figure S11 Fluorescence curves and corresponding optical photographs of FMC-2-OPD-O₂-Cys under the effect of 1 mM *p*-benzoquinone (BQ) and potassium iodide (KI) quencher-spiked agent.

Figure S12 Optical photographs of FMC-2-TiOSO₄ over time.

Figure S13. The high-resolution of Fe 2p XPS spectra for FMC-2.

Figure S14. The high-resolution of Ce 3d XPS spectra for CeO₂-Uio, the asterisks assigned to the spin-orbit split $3d_{3/2}$ and circles for $3d_{5/2}$.

Figure S15 Fluorescence curves of FMC-2 catalyzed oxidation of OPD under the enhancement of different concentrations of Cys.

Figure S16 The reproducibility of FMC-2 after repeated cycles.

Figure S17 (a) and (b) TEM image and EDS spectrum of FMC-2 before evaluation of self-cascading multienzyme mimic activity, respectively; (c) and (d) TEM image and EDS spectrum of FMC-2 after the reaction, respectively.

Figure S18 Optical photographs and ΔF of the developed self-cascading multienzyme sensing platform with different analytes. Analytes: 80 μ M of K⁺, Na⁺, Mg²⁺, Ca²⁺, NH₄⁺, Glu and urea.

Section 2. Supporting Tables

Table S1. Summary of Physicochemical Properties of FC-66 and FMC-n			
Sample	S _{bet}	Pore size	Pore volume
	(m ² ·g ⁻¹)	(nm)	(cm ^{3.} g ⁻¹)
FC-66	11.61	9.59	0.0508
FMC-1	16.12	12.41	0.0527
FMC-2	35.06	12.10	0.2296
FMC-3	38.86	18.45	0.2345

Table S2. Ce $3d_{3/2}$ and Ce $3d_{5/2}$ components in XPS spectra of FMC-2.

Ionic state	Spin orbit doublet	Components	BE	FWHM	Ce (III)
Tome state Spin	Spin-oron doublet	Components	(±0.1 eV)	(±0.1 eV)	ratio (%) ¹
Ce(IV) –		U	906.32	2.88	
	3d _{3/2}	\mathbf{U}^{II}	910.78	4.69	
		$\mathrm{U}^{\mathrm{III}}$	918.43	8.87	
	3d _{5/2}	V	887.25	3.19	
		VII	892.07	4.79	
		V ^{III}	901.09	6.60	34 %
Ce(III)	3d _{3/2}	U^{0}	903.94	3.08	
		U^{I}	908.31	2.88	
	2.1	V^0	884.67	4.25	
	3a _{5/2}	VI	889.83	2.91	

Table S3. Ce $3d_{3/2}$ and Ce $3d_{5/2}$ components in XPS spectra of CeO₂-Uio.

Ionic state	Spin-orbit doublet	Components	BE (±0.1 eV)	FWHM (±0.1 eV)	Ce (III) ratio (%) ¹
Ce(IV) -	3d _{3/2}	U	901.94	2.47	
		UII	908.09	3.42	
		U^{III}	917.06	3.53	
	3d _{5/2}	V	883.68	1.91	-
		\mathbf{V}^{II}	889.26	2.77	
		V ^{III}	897.71	2.68	29 %
Ce(III)	3d _{3/2}	U^{0}	900.38	2.32	
		U^{I}	904.56	2.44	
	2.1	V0	881.94	1.78	
	3a _{5/2}	VI	886.13	2.36	

Added (µM)	Measured (µM) Recovery (%)		RSD (%, n=3)
0	9.97 ± 0.19	-	-
20	29.64 ± 0.13	98.2	1.92
40	51.28 ± 0.18	102.6	2.03
0	11.64 ± 0.16	-	-
20	30.96 ± 0.15	103.2	2.01
40	50.56 ± 0.18	101.4	2.14
	Added (μM) 0 20 40 0 20 20 40	Added (μM) Measured (μM) 0 9.97 ± 0.19 20 29.64 ± 0.13 40 51.28 ± 0.18 0 11.64 ± 0.16 20 30.96 ± 0.15 40 50.56 ± 0.18	Added (μM) Measured (μM) Recovery (%) 0 9.97 ± 0.19 - 20 29.64 ± 0.13 98.2 40 51.28 ± 0.18 102.6 0 11.64 ± 0.16 - 20 30.96 ± 0.15 103.2 40 50.56 ± 0.18 101.4

Table S4. Recoveries of the determination of Cys in human urine samples using the proposed

 self-cascading multienzyme sensing platform.

Section 3. Supporting Schemes

Scheme S1. Catalytic oxidation of OPD by flower-like FMC-3 in the presence of O2.

Scheme S2. Catalytic oxidation of ABTS by flower-like FMC-3 in the presence of O2.

Scheme S3. Catalytic oxidation of TMB by flower-like FMC-3 in the presence of O₂.

Scheme S4. The oxygen vacancy (Vo) action maintains the surface charge of FMC.

References

(1) Beche E, Peraudeau G, Flaud V, et al. An XPS investigation of (La_2O_3) 1-x (CeO_2) 2x $(ZrO_2)_2$ compounds[J]. Surface and interface analysis, 2012, 44(8): 1045-1050.