Supporting Information

Preparation of nanoscale cationic Metal-Organic Framework Nano Mn(III)-

TP for theranostic based on valence changes

Shijiang Yu^{a1}, Hongliu Yu^{a1}, Panpan Si^a, Zhen Wang^a, Bing Wang^a, Wenxin Lin^{a,*}

^aSchool of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou,

310018, P. R. China.

Compound	Mn(II)-TP		
CCDC no.	2129399		
Empirical formula	C20 H16 Mn N0 O6		
Formula weight	407.27		
Temperature	100(2) K		
Wavelength	1.54178 Å		
Crystal system	monoclinic		
Space group	P 1 21/c 1		
Unit cell dimensions	$a = 17.5204(9) \text{ Å} \qquad \alpha = 90^{\circ}.$		
	$b = 6.5120(4) \text{ Å} \qquad \beta = 90.768(4)^{\circ}.$		
	$c = 7.2523(4) \text{ Å} \qquad \gamma = 90^{\circ}.$		
Volume	827.36(8) Å ³		
Z	2		
Density (calculated)	1.635 Mg/m ³		
Absorption coefficient	6.825 mm ⁻¹		
F(000)	418		
Theta range for data collection	5.049 to 68.079°.		
Index ranges	-20<=h<=21, -7<=k<=7, -7<=l<=8		
Reflections collected	8481		
Independent reflections	1498 [R(int) = 0.0760]		
Completeness to theta = 67.679°	98.9 %		
Data / restraints / parameters	1498 / 2 /130		
Goodness-of-fit on F ²	1.148		
Final R indices [I>2sigma(I)]	$R_1^a = 0.0608, w R_2^b = 0.1749$		
R indices (all data)	$R_1 = 0.0709, wR_2 = 0.1827$		
Largest diff. peak and hole	0.507 and -0.627 e.Å ⁻³		

Table S1. Crystal data and structure refinement for Mn(II)-TP.

 ${}^{a}R_{1} = \overline{\sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|, } {}^{b}wR_{2} = \{\sum [w(|F_{o}|^{2} - |F_{c}|^{2})^{2}] / \sum [w(F_{o}^{2})^{2}] \}^{1/2}$

Materials	λ	Equation	\mathbb{R}^2
DOX at DMA	480	y=24.22596x+0.0058	0.99877
MTXNa at HCl	241	y=35.37001 <i>x</i> +0.00854	0.99902
MTXNa at PBS solution (pH 7.4)	305	y=43.094 <i>x</i> -0.01075	0.99940
MTXNa at PBS solution (pH 5.0)	305	<i>y</i> =40.27614 <i>x</i> +0.03435	0.99771
MTXNa at GSH solution (pH 7.4)	302	<i>y</i> =40.17552 <i>x</i> -0.00893	0.99991
MTXNa at GSH solution (pH 5.0)	302	y=30.92087 <i>x</i> +0.0289	0.99952

Table S2 The equations of DOX and MTXNa at different solvent

Fig. S1 The SEM images of (a) as-synthesized Mn(II)-TP; (b) as-synthesized Mn(III)-TP; (c-d)

as-synthesized Nano Mn(III)-TP.

Fig. S2 The FT-IR spectra of Mn(II)-TP, Mn(III)-TP, Nano Mn(III)-TP and H₂TP.

Fig. S3 Thermogravimetric analysis of Mn(II)-TP, Mn(III)-TP and Nano Mn(III)-TP.

Fig. S4 The chemical structures of drug DOX and MTXNa.

Fig. S5 (a) The PXRD patterns of as-synthesized Mn(II)-TP and Nano Mn(III)-TP, water treated Mn(II)-TP and Nano Mn(III)-TP, GSH treated Nano Mn(III)-TP; (b) The PXRD patterns of simulated Mn(II)-TP, Mn(II)-TP and Nano Mn(III)-TP loaded with MTXNa and DOX.

Fig. S6 The UV-Vis absorption spectra of MB solutions containing (a) Mn(II)-TP with IPA; (b) Mn(II)-TP with BQ; (c) Mn(II)-TP with BQ and IPA; (d) Nano Mn(III)-TP with IPA; (e) Nano Mn(III)-TP with BQ; (f) Nano Mn(III)-TP with BQ and IPA.

Fig. S7 (a) The UV-Vis absorption spectra of NTB from pure GSH solution; (b) GSH solution after adding Nano Mn(III)-TP.

Fig. S8 (a) XPS spectra of Nano Mn(III)-TP treated by GSH for different time; (b) Mn 2p spectrum of Nano Mn(III)-TP treated by GSH for different time; (c) The Mn(II) and Mn(III) contents of Nano Mn(III)-TP treated by GSH for different time.

Fig. S9 L929 cell viability after culturing with Mn(II)-TP and Nano Mn (III)-TP.