Supporting Information

Transition metallo-curcumin complexes: A new hope for endometriosis?

Apoorva Singh¹, Pooja Ghosh², Suranjana Mukherjee¹, Atul Kumar Ojha¹, Anita Hansda¹, Priyanka Choudhury¹, Subhash Halder³, Sunita Sharma⁴, Gayatri Mukherjee^{1#}, Swagata Dasgupta ^{2#}, Koel Chaudhury ^{1#*}

¹School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India ²Department of Chemistry, Indian Institute of Technology Kharagpur, India ³Srijoni Healing Home, Kolkata, India ⁴Institute of Reproductive Medicine, Salt Lake, Kolkata, India

Gayatri Mukherjee, Swagata Dasgupta, and Koel Chaudhury have contributed equally and may be considered as joint corresponding authors

Professor Koel Chaudhury	Professor Swagata Dasgupta	Dr. Gayatri Mukherjee	
School of Medical Science	Department of Chemistry	School of Medical Science and	
and Technology	Indian Institute of Technology	Technology	
Indian Institute of	Kharagpur	Indian Institute of Technology	
Technology Kharagpur	Kharagpur, West Bengal-	Kharagpur	
Kharagpur, West Bengal-	721302	Kharagpur, West Bengal-721302	
721302	<u>Email id-</u>	Email id-	
Email id-	swagata@chem.iitkgp.ac.in	gayatri.mukherjee@smst.iitkgp.ac.in	
koel@smst.iitkgp.ac.in			
Contact no: 91-3222-			
283572			

Contents	Page no.
HPLC traces of Cu-Curc and Ni-Curc	3
Job's plot for synthesis of metallo-Curc complexes	4
Absorbance maxima of compounds in media	5
TGA data comparison of the individual curcumin complexes	6
Effect of DMSO on stromal cells	7

Figure S1: HPLC chromatograms of Cu-Curc and Ni-Curc

Purity>95% as determined by HPLC. HPLC conditions (Agilent 1260 Infinity)- C18 column, Mobile phase- 2% acetic acid and Acetonitrile (50:50), Flow rate- 1.00 mL/min.

Figure S2: Job's Plot of metallo-Curc complexes. (A, C, E, G, I Absorption spectra of Curc in (1) absence and (2-7) presence of respective metal ions in HPLC grade methanol); (B, D, F, G, H, I)- Job's plot for the complexation

Compound	λ _{em} (DMEM/F12 media +10% FBS)
Curc	505
Cu-Curc	504
Zn-Curc	502
Fe-Curc	519
Mn-Curc	514
Ni-Curc	504

Table S1: Emission maxima of compounds in cell culture media

Table S2: TGA data comparison of the individual curcumin complexes

Complex	Step	Temperature (°C)	Chemical process
Cu-Curc	Ι	RT - 110	Adsorbed water loss
	Ш	200 - 350	Loss of CH ₂ O moieties from curcumin ligand
	III	350 - 650	Oxidative decomposition of curcumin framework
Fe-Curc	Ι	RT - 100	Adsorbed water loss
	Ш	300 - 650	Oxidative decomposition of curcumin framework
Mn-Curc	Ι	RT - 90	Adsorbed water loss
	Ш	250 - 650	Oxidative decomposition of curcumin framework
Ni-Curc	Ι	RT - 110	Adsorbed water loss
	П	200 - 400	Removal of the C ₆ H ₅ moieties from curcumin framework
	Ш	400 - 650	Oxidative decomposition of curcumin framework
Zn-Curc	Ι	RT - 100	Adsorbed water loss
	Ш	300 - 350	Loss of CH ₂ O and C ₆ H ₅ moieties from curcumin ligand
	III	350 - 650	Oxidative decomposition of curcumin framework

Figure S3: Effect of DMSO (0.05%) on cell viability of endometrial stromal cells as evaluated by MTT assay