Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2022

Supporting information for Self-Healing Cyclic Peptide Hydrogels

Alfonso Bayón-Fernández,^{a,†} Alejandro Méndez-Ardoy,^{a,†} Carmen Alvarez-Lorenzo,^b Juan R. Granja,^{a,*} Javier Montenegro^{a,*}

^{*a*}Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.

^bDepartamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.

E-mail: juanr.granja@usc.es; javier.montenegro@usc.es

†These authors contributed equally.

Contents

S1	Synthesis of CP derivatives	3
	S1.1 Synthesis of CP derivatives	3
S2	Characterization of CP derivatives by NMR, HPLC-MS and ATR-IR	4
	S2.1 2T	4
	S2.2 1TN	6
	S2.3 1TA	8
	S2.4 2TN	10
	S2.5 2TA	12
	S2.6 2TP	14
S 3	Self-assembly of CP derivatives	16
	S3.1 Self-assembly monitored by spectroscopic techniques	17
	S3.2 SEM images of gels	22
	S3.3 Nanotube characterization by STEM imaging	23
S4	Abbreviations	27

S1 Synthesis of CP derivatives

S1.1 Synthesis of CP derivatives

Scheme S1: Preparation of precursor **2T**: a) $N-\alpha$ -(9-Fluorenylmethyloxycarbonyl)-L-lysine allyl ester hydrochloride, DIEA, DCM, 2 h; b) i) piperidine/DMF (1:4), 10 min, ii) amino acid, *N*-HBTU, DIEA, DMF, 30 min, repeat 7 cycles with the corresponding aminoacid; c) i) Pd(OAc)₂, PPh₃, phenylsilane, 4-methylmorpholine, DCM, overnight, ii) piperidine/DMF (1:4), 10 min, iii) PyAOP, DIEA, DMF, 4 h.; d) i) DCM-TFA-TIS (97.6:1.4:1), 1 h, twice ii) [(tert-butoxycarbonyl)aminoxy]acetic acid, *N*-HATU, DIEA, DMF, 45 min; e) TFA-DCM-H₂O-TIS (9:0.5:0.25:0.25).

- S2 Characterization of CP derivatives by NMR, HPLC-MS and ATR-IR
- S2.1 2T

Figure S2: a) HPLC chromatogram of peptide **2T**. Gradient of 0% to 75% ACN (0.1% TFA) in 20 min; b) MS spectra of the main peak.

Figure S3: 1 H NMR spectra (300 MHz, D₂O, room temperature) of cyclic peptide 2T.

S2.2 1TN

Figure S5: a) HPLC chromatogram of peptide **1TN**. Gradient of 5% to 95% ACN (0.1% TFA) in 15 min; b) MS spectra of the main peak.

Figure S6: ¹H NMR spectra (300 MHz, DMSO- d_6 , room temperature) of cyclic peptide **1TN**.

S2.3 1TA

Figure S8: a) HPLC chromatogram of peptide **1TA**. Gradient of 5% to 95% ACN (0.1% TFA) in 15 min; b) MS spectra of the main peak.

Figure S9: ¹H NMR spectra (300 MHz, DMSO- d_6 , room temperature) of cyclic peptide **1TA**.

S2.4 2TN

Figure S11: a) HPLC chromatogram of peptide **2TN**. Gradient of 5% to 95% ACN (0.1% TFA) in 12 min; b) MS spectra of the main peak.

Figure S12: ¹H NMR spectra (300 MHz, DMSO- d_6 , room temperature) of cyclic peptide 2TN

S2.5 2TA

Figure S14: a) HPLC chromatogram of peptide **2TA**. Gradient of 5% to 95% ACN (0.1% TFA) in 12 min; b) MS spectra of the main peak.

Figure S15: ¹H NMR spectra (300 MHz, DMSO- d_6 , room temperature) of cyclic peptide **2TA**.

S2.6 2TP

Figure S17: a) HPLC chromatogram of peptide **2TP**. Gradient of 5% to 95% ACN (0.1% TFA) in 12 min; b) MS spectra of the main peak.

Figure S18: ¹H NMR spectra (300 MHz, DMSO- d_6 , room temperature) of cyclic peptide **2TP**.

S3 Self-assembly of CP derivatives

Hydrogel to solution transition upon acidification

Figure S19: Reversible gel-sol transition upon acidification of **1TP** hydrogels a) Preformed hydrogel (2% w/w, pH 8-9); b) Transition to a solution state after addition of concentrated acid.

S3.1 Self-assembly monitored by spectroscopic techniques

ATR-FTIR spectra collected from assembled CP

Figure S20: ATR-FTIR spectra for freeze-dried alkaline samples of **1TN**, **1TA**, **1TP**, **2TN**, **2TA** and **2TP**.

СР	Wavelength (cm ⁻¹)
1TN	1624, 1683
1TA	1624, 1678
1TP	1622, 1674
2TN	1622, 1673
2TA	1621, 1673
2TP	1622, 1673

Table S1: Wavenumber of maximum intensity corresponding to the Amide I stretching bands obtained from ATR-FTIR spectra in Figure S20.

Self-assembly of 1TN, 1TA, 1TP, 2TN, 2TA and 2TP probed by fluorescence spectroscopy

Figure S21: Fluorescence emission spectra of CPs (400 μ M, water) at different pH values. The parameters are: a) **1TN**: $\lambda_{ex} = 230$ nm; b) **1TA**: $\lambda_{ex} = 385$ nm; c) **1TP**: $\lambda_{ex} = 340$ nm: d) **2TN**: $\lambda_{ex} = 230$ nm; e) **2TA**: $\lambda_{ex} = 385$ nm; f) **2TP**: $\lambda_{ex} = 340$ nm.

Figure S22: Fluorescence emission spectra of CPs (400 μ M, water) at different pH values, normalized to the maximum fluorescence emission at each pH.

Figure S23: Aggregation-induced quenching of CPs fluorescence emission (400 µM, water) at different pH values. The wavelength showing maximum intensity at acidic pH was used as reference: a) **1TN**: $\lambda_{max} = 376$ nm; b) **1TA**: $\lambda_{max} = 471$ nm; c) **1TP**: $\lambda_{max} = 425$ nm: d) **2TN**: $\lambda_{max} = 374$ nm; e) **2TA**: $\lambda_{max} = 477$ nm; f) **2TP**: $\lambda_{max} = 428$ nm.

Figure S24: Determination of critical aggregation concentration (CAC) by fluorescence experiments in the presence of ThT (20 μ M).

Figure S25: UV spectra at different pH values of CP 1TN (100 μ M)

Figure S26: UV spectra of CP (3 µM) acquired in acidic pH (HCl 5 mM) or alkaline pH (HEPES 10 mM); a)**1TA**; b) **2TN**; c) **2TA**, acquired also in MES 10 mM at pH 5.2 and 6.2; d) **2TP**.

S3.2 SEM images of gels

Figure S27: SEM images of **1TA**, **1TP**, **2TN**, **2TA** and **2TP** freeze-dried gels showing local regions were nanotubes are clearly visualized. The dashed boxes highlight the presence of nanotubes under the surface.

S3.3 Nanotube characterization by STEM imaging

Figure S28: STEM micrographs of dilutions of 1TA gels (final concentration 11 μ M) after staining with uranyl acetate.

Figure S29: STEM micrographs of dilutions of 1TP gels (final concentration 11μ M) after staining with uranyl acetate.

Figure S30: STEM micrographs of dilutions of 2TN gels (final concentration 11 μM) after staining with uranyl acetate

Figure S31: STEM micrographs of dilutions of 2TA gels (final concentration 11 μM) after staining with uranyl acetate.

Figure S32: STEM micrographs of dilutions of 2TP gels (final concentration 11 μ M) after staining with uranyl acetate.

S4 Abbreviations

ACN: acetonitrile; CP: Cyclic peptide, 2CTC: 2-Chlorotrityl chloride, DCM: dichloromethane; DIEA: *N*,*N*-Diisopropylethylamine, DMF: *N*,*N*-Dimethylformamide, Fmoc: 9-Fluorenylmethoxycarbonyl; Mtt: 4-Methyltrityl; *N*-HATU: *N*-[(Dimethylamino)-1H-1,2,3-triazolo[4,5-b]pyridin-1-ylmethylene]- N-methyl methanaminium hexafluorophosphate *N*-oxide; *N*-HBTU: *N*-[(1*H*-Benzotriazol-1-yl)- (dimethylamino)methylene]-*N*-methylmethanaminium hexafluorophosphate *N*-oxide; HFIP: 1,1,1,3,3,3-Hexafluoropropan-2-ol; PyAOP: (7-Azabenzotriazol-1-yloxy) tripyrrolidinophosphonium hexafluorophosphate; TFA: Trifluoroacetic acid; TFE: 2,2,2-Trifluoroethanol; TIS: Triisopropylsilane; UV-vis: Ultraviolet-visible