Supplementary data

A mechanically robust and stable estradiol-loaded PHEMA-based

hydrogel barrier for intrauterine adhesions treatment

Xiangyan Xie¹, Ruijuan Xu², Hongyan Ouyang¹, Shiqiao Tan², Chuan Guo³, Xingqi Luo¹, Yuanjie Xie¹, Di Wu¹, Xiangyu Dong⁴, Jinrong Wu⁴, Yi Wang^{1, 4*} and Lijuan Zhao^{1*}

¹ College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China

² Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University,

Chengdu 610041, China

³ Orthopedic research institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China

⁴ State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China

‡ These authors contributed equally to this paper.

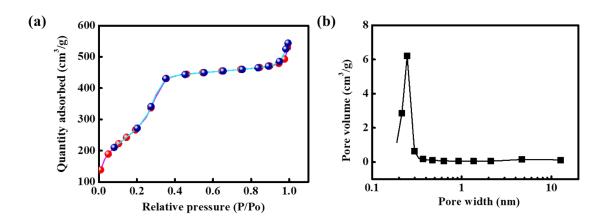


Fig. S1. (a) The nitrogen adsorption-desorption isotherms of E2@SiO₂. (b) The pore size

distribution.

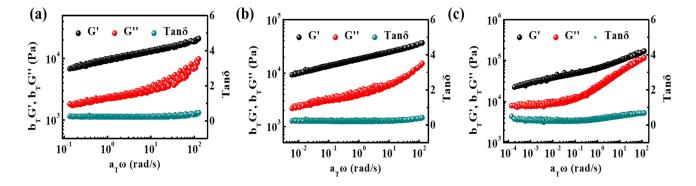


Fig. S2. Representative main curves of (a) the PHM hydrogel, (b) PHM_C hydrogel, and (c) PHM_H -Si hydrogel obtained by changing the frequency sweep curve at different temperatures with a reference temperature of 10 °C.

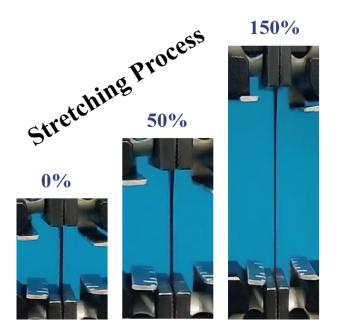


Fig. S3. Stretching of the PHM_H -Si hydrogel.

Fig. S4. Photograph of the PHM_H-Si hydrogel implanted under pig skin for 2 months.

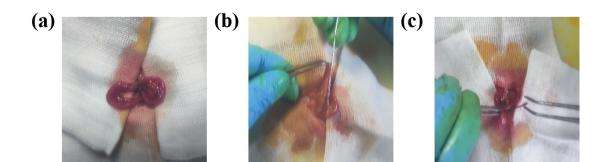


Fig. S5. The surgery process of IUAs rat model and treatment with PHM_H -Si hydrogel. (a) Exposing the uterus of the rat. (b) Establishing IUAs rat model by mechanical injury. (c) Putting PHM_H -Si hydrogel into the injured uterus.