Supplementary Materials

Nano-assemblies of Phosphonium-functionalized Diblock Copolymers with Fabulous Antibacterial and Relationships of Structure-Activity

Peng Cao^a, Xue Bai^a, Yufeng He^a, Pengfei Song^a, Rongmin Wang^a^{*}, Junchao Huang^b^{*}

^a Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymers, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
^b School of Engineering, Westlake University, Hangzhou 310030, China.
E-mail address: <u>wangrm@nwnu.edu.cn</u>; huangjunchao@westlake.edu.cn

Figure S1. ¹H (a) and ¹³C (b) NMR and FTIR (c) spectra of DCMAT.

Figure S2. ¹H (a) and ¹³C (b) NMR spectrum of QPSPh₃IL.

Figure S3. ¹H (a) and ¹³C (b) NMR spectrum of QPSBu₃IL.

Figure S4. ${}^{31}P$ NMR spectra of Bu₆₀ (a), Ph₆₀ (b), Bu₆₀St₁₂₀-M (c) and Ph₆₀St₁₂₀-M (d).

Figure S5. XPS analysis for PhE₂₀, BuE₂₀, and BuE₃₀ samples to identify the existence of carbon, oxygen, phosphorus, chlorine, and sulfur element.

Figure S6. The contact angle of several PEGDMA crosslinked PFDCs.

Figure S7. The molar ratio of EDGMA dependence of particle size (D_h, nm) (a) and ξ -potential (mV) (b).

Figure S8. Tyndall effect of Bu₆₀St_y and Ph₆₀St_y PFDCs in either methanol or 1,4-dioxane solvent.

Figure S9. Tyndall effect of PEGDMA crosslinked PFDCs in methanol solution.

Figure S10. Photographs of the culture plates for *E. coli* and *S. aureus* after exposure to PhE_{20} , BuE_{20} , and BuE_{30} .

Figure S11. Antibacterial activity against *E. coli* (a) and *S. aureus* (b) of the PFDCs with special morphology. The diameter was obtained from the SEM result.

Synthesis Media	Block Copolymer ^a	Targeted DP for St	Time (h)	<i>Conv.</i> (%) ^b	$M_{n,th} \left(\mathbf{g} \cdot \mathbf{mol}^{-1} \right)^c$	$M_{n,APC}(\mathbf{g}\cdot\mathbf{mol}^{-1})$	Ð
Methanol	Bu ₆₀ St ₇₀₀ -M	700	16	97.6%	94567	85644	1.25
	$Bu_{60}St_{200}$ -M	200	16	97.5%	42492	40818	1.17
	$Bu_{60}St_{120}$ -M	120	16	97.8%	34160	36452	1.16
	$Bu_{60}St_{30}$ -M	30	16	96.9%	24786	24223	1.12
	Ph ₆₀ St ₇₀₀ -M	700	18	98.6%	98163	84184	1.25
	Ph ₆₀ St ₂₀₀ -M	200	18	98.5%	46089	45574	1.10
	Ph ₆₀ St ₁₂₀ -M	120	17	96.8%	37757	35274	1.13
	Ph ₆₀ St ₃₀ -M	30	16	95.1%	28384	27666	1.12
1,4-Dioxane	Bu ₆₀ St ₇₀₀ -D	700	18	98.8%	94567	92742	1.21
	$Bu_{60}St_{200}$ -D	200	15	97.0%	42492	41453	1.14
	$Bu_{60}St_{120}$ -D	120	16	97.2%	34160	39280	1.13
	$Bu_{60}St_{30}$ -D	30	17	96.7%	24786	23217	1.12
	Ph ₆₀ St ₇₀₀ -D	700	17	98.0%	98163	43580	1.24
	Ph ₆₀ St ₂₀₀ -D	200	18	98.0%	46089	43070	1.24
	$Ph_{60}St_{120}$ -D	120	17	97.2%	37757	35685	1.16
	Ph ₆₀ St ₃₀ -D	30	18	98.8%	28384	26090	1.15

 Table S1. Summary of molecular weight and conversion rate for all non-crosslinked PFDC diblock copolymers.

^{*a*} D: 1,4-dioxane; M: methanol.

^{*b*} Determined by ¹H NMR analysis.

^c Theoretical number-average molecular weight was calculated by: $M_{n,th} = Conv. \times ([N_{\text{monomer}}/N_{\text{CTA}}]) \times M_{\text{monomer}} + M_{n,\text{macro}-CTA}$.

^{*d*} *D* value was calculated by: $D = M_w/M_{n,APC}$.

Sample ^a	<i>n</i> (Bu ₆₀ /Ph ₆₀): <i>n</i> (EGDMA)	$D_h(\mathrm{nm})^{\ b}$	PDI ^c	ζ-potential (mV)
Bu ₆₀	1:0	574	0.108	23.1
$Ph_{_{60}}$	1:0	587	0.262	30.6
BuE_{10}	1:10	569	0.124	20.8
BuE_{20}	1:20	545	0.136	22.3
$\mathrm{Bu}\mathrm{E}_{25}$	1:25	503	0.202	22.9
BuE_{30}	1:30	455	0.230	25.4
PhE_{10}	1:10	580	0.256	29.7
PhE_{20}	1:20	563	0.251	34.1
PhE ₂₅	1:25	535	0.247	34.5
PhE ₃₀	1:30	514	0.205	36.9

Table S2. Particle properties of PEGDMA crosslinked PFDCs with different substrate ratios measured by DLS.

^{*a*} Measured in methanol.

^b Average hydrodynamic diameter of the resultant nanoparticles.

^c Polydispersity index obtained from the accessory software.