Supporting Information for

Bioorthogonally-Activated Tetraphenylene-Tetrazine Aggregation-Induced Emission Fluorogenic Probes

Yu Teng,^a Rongrong Zhang,^a Bingbing Yang,^b Hong Yang,^a Xiang Li,^a Dali Yin,^a Xinchi Feng,^{*b} Yulin Tian^{*a}

^a State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China. E-mail: tianyulin@imm.ac.cn

^b School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China. E-mail: <u>xiaochi0211@163.com</u>,

Contents

Supplemental Figures and Tables

Fig. S1 AIE properties of TPE-Tz1 ~ TPE-Tz11S	3
Fig. S2 Fluorescence emission spectra of TPE-Tz1/2/3/5/6/8/9/10/11 and TPE-	
Pz1/2/3/5/6/8/9/10/11	4
Fig. S3 AIE properties of TPE-Pz1/2/3/5S	5
Fig. S4 AIE properties of TPE-Pz6/8/9S	6
Fig. S5 ACQ patterns of TPE-Pz10 and TPE-Pz11S	57
Fig. S6 Optimized 3D structure of TPE-Pz7s ~ TPE-Pz11sS	8
Fig. S7 Thermal ellipsoid plot for the crystal structure of TPE-Pz10S	8
Fig. S8 Reaction kinetic analysis for the reaction between TPE-Tz1 \sim TPE-Tz11 and	d
BCNS	9
Fig. S9 Fluorescence emission spectra of TPE-Tz12/13/14/15 and TPE-	
Pz12/13/14/15	0
Fig. S10 AIE properties of TPE-Pz12/13/15S1	1
Fig. S11 Mass spectrum for the reaction mixture of TPE-Tz14 and L1/L2S1	2
Fig. S12 Cytotoxicity of TPE-Tz1 ~ TPE-Tz15 against HeLa cellsS1	3
Fig. S13 Confocal imaging of live cells labeled by BCN-TPP/TPE-Tz7S1	4
Table S1 Crystal data and structure refinement for TPE-Pz10 S1	5
General Information	6
Experimental Procedures and Characterization Data	1
Reference	1
¹ H and ¹³ C NMR Spectra	'2

Fig. S1 Fluorescence emission spectra of TPE-Tz1 ~ TPE-Tz11 in DMSO/H₂O mixed solution (10 μ M) with different water fractions (λ_{exc} =365 nm).

Fig. S2 Fluorescence emission spectra and fluorescent images of TPE-Tz1/Pz1 (a), TPE-Tz2/Pz2 (b), TPE-Tz3/Pz3 (c), TPE-Tz5/Pz5 (d), TPE-Tz6/Pz6 (e), TPE-Tz8/Pz8 (f), TPE-Tz9/Pz9 (g) in H₂O (10 μ M), and TPE-Tz10/Pz10 (h), TPE-Tz11/Pz11 (i) in DMSO (10 μ M) (λ_{exc} =365 nm).

Fig. S3 Fluorescence emission spectra of TPE-Pz1 (a), TPE-Pz2 (c), TPE-Pz3 (e), TPE-Pz5 (g) in DMSO/H₂O mixed solution (10 μ M) with different water fractions (λ_{exc} =365 nm). Plot of relative emission intensity (I/I_0) vs water fractions for TPE-Pz1 (b), TPE-Pz2 (d), TPE-Pz3 (f), TPE-Pz5 (h).

Fig. S4 Fluorescence emission spectra of TPE-Pz6 (a), TPE-Pz8 (c), TPE-Pz9 (e) in DMSO/H₂O mixed solution (10 μ M) with different water fractions (λ_{exc} =365 nm). Plot of relative emission intensity (*I*/*I*₀) vs water fractions for TPE-Pz6 (b), TPE-Pz8 (d), TPE-Pz9 (f).

Fig. S5 Fluorescence emission spectra of TPE-Pz10 (a), TPE-Pz11 (c) in DMSO/H₂O mixed solution (10 μ M) with different water fractions (λ_{exc} =365 nm). Plot of relative emission intensity (I/I_0) vs water fractions for TPE-Pz10 (b), TPE-Pz11 (d).

Fig. S6 Optimized 3D structure of TPE-Pz7s (a), TPE-Pz8s (b), TPE-Pz9s (c), TPE-Pz10s (d), TPE-Pz11s (e).

Fig. S7 Thermal ellipsoid plot of the crystal structure of TPE-Pz10 (50% ellipsoid probability).

Fig. S8 Reaction kinetic analysis for the reaction between TPE-Tz1 ~ TPE-Tz11 (0.1 mM) and BCN (1 mM) in PBS buffer (pH=7.4) at 37°C. The fluorescence intensity of the mixture solution at different time interval was recorded at λ_{em} of each probe using TECAN fluorescence plate reader (λ_{exc} =365 nm). The reaction kinetics was hypothesized as pseudo-first order reaction, and the observed rate constants (k_{obs}) were calculated using the one phase exponential association equation. The second order rate constants (k_2) were calculated using the equation: $k_2 = k_{obs}/[BCN reagent]$.

Fig. S9 Fluorescence emission spectra and fluorescent images of TPE-Tz12/Pz12 (a), TPE-Tz13/Pz13 (b), TPE-Tz14/Pz14 (c) in H₂O (10 μ M), and TPE-Tz15/Pz15 in DMSO (10 μ M) (d) (λ_{exc} =365 nm).

Fig. S10 Fluorescence emission spectra of TPE-Pz12 (a), TPE-Pz13 (c), TPE-Pz15 (e) in DMSO/H₂O mixed solution (10 μ M) with different water fractions (λ_{exc} =365 nm). Plot of relative emission intensity (I/I_0) vs water fractions for TPE-Pz12 (b), TPE-Pz13 (d), TPE-Pz15 (f).

Fig. S11 Mass spectrum of the reaction mixture of TPE-Tz14 (100 μ M) with BCN (200 μ M) (a), L1 (100 μ M) (b), or L2 (100 μ M) (c) in DMSO.

Fig. S12 Cytotoxicity of TPE-Tz1 (a), TPE-Tz2 (b), TPE-Tz3 (c), TPE-Tz4 (d), TPE-Tz5 (e), TPE-Tz6 (f), TPE-Tz7 (g), TPE-Tz8 (h), TPE-Tz9 (i), TPE-Tz10 (j), TPE-Tz11 (k), TPE-Tz12 (l), TPE-Tz13 (m), TPE-Tz14 (n), and TPE-Tz15 (o) against HeLa cells based on MTT assay. The cells were incubated with each TPE-tetrazine probe for 48 h.

Fig. S13 Confocal images of HeLa cells labeled by BCN-TPP/TPE-Tz7. The cells were treated with BCN-TPP (1 μ M) and Mito Tracker Red (MTR, 200 nM) for 1 h, and then with TPE-Tz7 (1 μ M) for 1 h. Scale bar: 10 μ m. MTR: 200 nM; BCN-TPP: 1 μ M; TPE-Tz7: 1 μ M.

	Single crystal of TPE-Pz10
Empirical formula	$C_{51}H_{46}N_2O_3S_2$
Formula weight	799.02
Temperature/K	150.00(10)
Crystal system	monoclinic
Space group	P2/c
a/Å	17.146(7)
b/Å	10.393(2)
c/Å	24.936(13)
α/°	90
β/°	97.90(4)
$\gamma/^{\circ}$	90
Volume/Å ³	4401(3)
Z	4
$\rho_{calc}g/cm^3$	1.206
μ/mm^{-1}	1.437
F(000)	1688.0
Crystal size/mm ³	0.14 imes 0.12 imes 0.1
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	5.204 to 133.186
Index ranges	$-20 \le h \le 20, -12 \le k \le 11, -29 \le l \le 29$
Reflections collected	16034
Independent reflections	7774 [$R_{int} = 0.0131, R_{sigma} = 0.2744$]
Data/restraints/parameters	7774/903/537
Goodness-of-fit on F ²	1.058
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0752, wR_2 = 0.2164$
Final R indexes [all data]	$R_1 = 0.0824, wR_2 = 0.2393$
Largest diff. peak/hole / e Å ⁻³	0.91/-1.01

Table S1 Crystal data and structure refinement for TPE-Pz10.

General Information

Compound **BCN-TPP** was prepared by the same procedure according to the reported literature¹. Compound **L1**, **L2** were purchased from Confluore Biotechnology. Mito Tracker Red (MTR) was purchased from Beyotime. All the other solvents and chemicals were purchased from commercial sources and used directly without further purification. ¹ H NMR and ¹³C NMR spectra were recorded on a Varian 400 MHz, 500 MHz, or 600 MHz spectrometer. Chemical shifts are referenced to the residual solvent peak and reported as δ units in ppm (in NMR description, s = singlet, d = doublet, t = triplet, q = quartet and m = multiple), and all coupling constant (*J*) values are given in hertz. ESI-HRMS data were measured on Thermo LCQ Deca XP Max mass spectrometer equipped with an ion trap mass analyzer. Silica gel flash column chromatography was performed on Biotage Isolera one. Fluorescence emission spectra were recorded on Tecan SparkTM 10M Multimode Microplate Reader. Confocal laser scanning microscope imaging was conducted using a Leica TCS SP8 X Confocal Microscope.

Experimental Procedures and Characterization Data

Synthesis of (2,2-dibromovinyl)benzene (S1)

To a solution of carbon tetrabromide (1.25 g, 3.8 mmol) in DCM (30 mL) was added triphenylphosphine (2.0 g, 7.6 mmol) under argon protection. The reaction solution was cooled to 0 °C using an ice bath and then benzaldehyde (200 mg, 1.9 mmol) was added. The reaction mixture was stirred at room temperature for 1 h, then concentrated. The residue was purified by silica gel flash column chromatography (PE/EtOAc = 15:1) to afford the titled compound as yellow oil (310 mg, 62.8% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.54 (dd, *J* = 1.8, 0.7 Hz, 1H), 7.52 (dd, *J* = 1.4, 0.7 Hz, 1H), 7.48 (s, 1H), 7.37 (d, *J* = 0.7 Hz, 1H), 7.35 – 7.34 (m, 2H).

Synthesis of 4,4'-(2-phenylethene-1,1-diyl)bis(methoxybenzene) (S2)

To a solution of **S1** (400 mg, 1.5 mmol) in a mixture of PEG400 and water (V_{PEG400} : $V_{H_{2O}} = 1:3$) was added 4- methoxyphenylboronic acid (580 mg, 3.8 mmol), Pd(OAc)₂ (8.5 mg, 0.04 mmol) and K₂CO₃ (650 mg, 3.0 mmol). The reaction mixture was stirred at 40 °C using an oil bath for 24 h under argon protection. Then the reaction was quenched with H₂O (10 mL) and extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was isolated by silica gel flash column chromatography to afford the titled compound (228.2 mg, 47.2% yield) as yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.26 (s, 1H), 7.24 (s, 1H), 7.11 (m, *J* = 7.6, 5H), 7.05 – 7.01 (m, 2H), 6.89 – 6.79 (m, 5H), 3.82 (s, 3H), 3.81 (s, 3H).

Synthesis of 4,4'-(2-bromo-2-phenylethene-1,1-diyl)bis(methoxybenzene) (S3)

To a solution of **S2** (500 mg, 1.5 mmol) in CCl₄ (20 mL) was added NBS (337.5 mg, 1.9 mmol). The reaction mixture was stirred at 80 °C using an oil bath for 3 h and then concentrated. The residue was isolated by silica gel flash column chromatography to afford the titled compound as yellow solid (510 mg, 81.0% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.27 (m, 4H), 7.19 – 7.13 (m, 3H), 6.89 (d, *J* = 8.8 Hz, 2H), 6.84 (d, *J* = 8.9 Hz, 2H), 6.58 (d, *J* = 8.9 Hz, 2H), 3.83 (s, 3H), 3.69 (s, 3H).

Synthesis of 3-(4-bromophenyl)-6-methyl-1,2,4,5-tetrazine (S4)

To a solution of 4-bromobenzonitrile (400 mg, 2.2 mmol) in CH₃CN (4 mL) was added *N*-acetyl-L-cysteine (360 mg, 2.2 mmol) under argon protection. The reaction solution was cooled to 0 °C using an ice bath and the hydrazine hydrate (1.7 mL, 35.2 mmol) was added dropwise, and then the reaction mixture was stirred at 40 °C using an oil bath for 16 h. Upon completion, the reaction solution was cooled to 0 °C, then a water solution of sodium nitrite (1.87 g, 22.0 mmol) was slowly added, followed by slow addition of 2 N HCl during which the solution was stirred intensely and turned bright red, and gas evolved. Addition of 2 N HCl continued until gas evolution ceased and the pH value was 3-4. Then the reaction mixture was extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified by silica gel flash column chromatography (PE/EtOAc = 10:1) to afford the titled compound as purple solid (334 mg, 60.6% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, *J* = 8.8 Hz, 2H), 7.73 (d, *J* = 8.8 Hz, 2H), 3.10 (s, 3H).

Synthesis of 3-methyl-6-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1,2,4,5-tetrazine (S5)

To a solution of S4 (400 mg, 1.6 mmol) in 1,4-dioxane (20 mL) was added bis(pinacolato)diboron (608 mg, 2.4 mmol), Pd(dppf)Cl₂ (2.9 mg, 0.04 mmol) and KOAc (468.8 mg, 4.8 mmol) under argon protection. The reaction mixture was stirred at 100°C using an oil bath for 8 h, then concentrated. The residue was purified by silica gel flash column chromatography (PE/EtOAc = 5:1) to afford the titled compound as purple solid (368 mg, 77.6% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.77 (d, *J* = 8.8 Hz, 2H), 8.05 (d, *J* = 8.8 Hz, 2H), 3.05 (s, 3H), 1.43 (s, 12H).

Synthesis of 3-(3-bromophenyl)-6-methyl-1,2,4,5-tetrazine (S6)

To a solution of 3-bromobenzonitrile (400 mg, 2.2 mmol) in CH₃CN (4 mL) was added *N*-acetyl-L-cysteine (360 mg, 2.2 mmol) under argon protection. The reaction solution was cooled to 0 °C using an ice bath and the hydrazine hydrate (1.71 mL, 35.2 mmol) was added dropwise, and then the reaction mixture was stirred at 40 °C using an oil bath for 16 h. Upon completion, the reaction solution was cooled to 0 °C, then a water solution of sodium nitrite (1.87 g, 22.0 mmol) was slowly added, followed by slow addition of 2 N HCl during which the solution was stirred intensely and turned bright red, and gas evolved. Addition of 2 N HCl continued until gas evolution ceased and the pH value was 3-4. Then the reaction mixture was extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified by silica gel flash column chromatography (PE/EtOAc = 10:1) to afford the titled compound as purple solid (396.8 mg, 71.9% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.79 (t, *J* = 1.9 Hz, 1H), 8.57 (d, *J* = 7.9 Hz, 1H), 7.82 – 7.75 (m, 1H), 7.51 (t, *J* = 8.0 Hz, 1H), 3.15 (s, 3H).

Synthesis of 3-methyl-6-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1,2,4,5-tetrazine (S7)

To a solution of **S6** (400 mg, 1.6 mmol) in 1,4-dioxane (20 mL) was added bis(pinacolato)diboron (608 mg, 2.4 mmol), Pd(dppf)Cl₂ (2.9 mg, 0.04 mmol) and KOAc (468.8 mg, 4.8 mmol) under argon protection. The reaction mixture was stirred at 100°C using an oil bath for 8 h, then concentrated. The residue was purified by silica gel flash column chromatography (PE/EtOAc = 5:1) to afford the titled compound as purple solid (343 mg, 72.3% yield). ¹H NMR (500 MHz, CDCl₃) δ 9.08 (s, 1H), 8.70 (d, *J* = 7.4 Hz, 1H), 8.14 – 8.04 (m, 1H), 7.64 (m, 1H), 3.14 (s, 3H), 1.42 (s, 12H).

Synthesis of diethyl ((6-methyl-1,2,4,5-tetrazin-3-yl)methyl)phosphonate (88)²

To a solution of 2-(diethylphosphonyl)acetonitrile (177 mg, 1.0 mmol) in CH₃CN (4 mL) was added *N*-acetyl-L-cysteine (163 mg, 1.0 mmol) under argon protection. The reaction solution was cooled to 0 °C using an ice bath and the hydrazine hydrate (777 μ L, 16.0 mmol) was added dropwise, and then the reaction mixture was stirred at 40 °C using an oil bath for 16 h. Upon completion, the reaction solution was cooled to 0 °C, then a water solution of sodium nitrite (904 mg, 10.0 mmol) was slowly added, followed by slow addition of 2 N HCl during which the solution was stirred intensely and turned bright red, and gas evolved. Addition of 2 N HCl continued until gas evolution ceased and the pH value was 3-4. Then the reaction mixture was extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified by silica gel flash column chromatography (DCM/MeOH = 20:1) to afford the titled compound as purple oil (118 mg, 48.0% yield). ¹H NMR (400 MHz, CDCl₃) δ 4.27 – 4.14 (m, 4H), 3.93 (d, *J* = 22.4 Hz, 2H), 3.06 (s, 3H), 1.33 (t, *J* = 7.2 Hz, 6H).

$$Br - CHO \xrightarrow{F_{F}} F_{F}, \frac{h}{r}, \frac{h$$

Synthesis of (*E*)-3-(4-bromostyryl)-6-methyl-1,2,4,5-tetrazine (S9)

To a solution of 1,1,1,3,3,3-hexafluoro-2-propanol (167.3 µL, 1.6 mmol) in dry THF (10 mL) was added 1.6 M n-BuLi (1.0 mL, 1.6 mmol) at -20 °C under argon protection. The reaction was stirred for 30 min at -20 °C and further cooled to -30 °C. The solution of THF containing 4-bromobenzaldehyde (130.7 mg, 0.71 mmol) and **S3** (260 mg, 1.06 mmol) was added to the mixture dropwise and stirred for 8 h at -30 °C. The reaction mixture was quenched by H₂O (20 mL) and extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by silica gel flash column chromatography (PE/EtOAc = 5:1) to afford the titled compound as purple solid (165.4 mg, 84.5% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.28 (d, *J* = 16.3 Hz, 1H), 7.62 (d, *J* = 8.4 Hz, 2H), 7.58 (d, *J* = 8.6 Hz, 2H), 7.49 (d, *J* = 16.3 Hz, 1H), 3.10 (s, 3H).

Synthesis of (*E*)-3-methyl-6-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)styryl)-1,2,4,5-tetrazine (S10)

To a solution of **S9** (200 mg, 0.72 mmol) in 1,4-dioxane (20 mL) was added bis(pinacolato)diboron (274.9 mg, 1.08 mmol), Pd(dppf)Cl₂ (1.5 mg, 0.02 mmol) and KOAc (212.4 mg, 2.16 mmol) under argon protection. The reaction mixture was stirred at 100°C using an oil bath for 6 h, then concentrated. The residue was purified by silica gel flash column chromatography (PE/EtOAc = 5:1) to afford the titled compound as purple solid (212 mg, 90.9% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.39 – 8.37 (m, 1H), 7.95 – 7.93 (m, 2H), 7.76 – 7.73 (m, 2H), 7.57 (m, 1H), 7.30 – 7.32 (m, 2H), 3.11 (s, 3H), 1.42 (s, 12H).

Synthesis of (*E*)-3-(3-bromostyryl)-6-methyl-1,2,4,5-tetrazine (S11)

To a solution of 1,1,1,3,3,3-hexafluoro-2-propanol (167.3 µL, 1.6 mmol) in dry THF (10 mL) was added 1.6 M n-BuLi (1.0 mL, 1.6 mmol) at -20 °C under argon protection. The reaction was stirred for 30 min at -20 °C and further cooled to -30 °C. The solution of THF containing 3-bromobenzaldehyde (130.7 mg, 0.71 mmol) and **S8** (260 mg, 1.06 mmol) was added to the mixture dropwise and stirred for 8 h at -30 °C. The reaction mixture was quenched by H₂O (20 mL) and extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by silica gel flash column chromatography (PE/EtOAc = 5:1) to afford the titled compound as purple solid (172.5 mg, 87.7% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.27 (dd, *J* = 16.2, 2.2 Hz, 1H), 7.90 – 7.81 (m, 1H), 7.64 (d, *J* = 7.7 Hz, 1H), 7.58 (d, *J* = 7.9 Hz, 1H), 7.50 (m, 1H), 7.37 (m, 1H), 3.11 (s, 1H).

Synthesis of (*E*)-3-methyl-6-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)styryl) -1,2,4,5-tetrazine (S12)

To a solution of **S11** (124 mg, 0.44 mmol) in 1,4-dioxane (20 mL) was added bis(pinacolato)diboron (170.4 mg, 0.66 mmol), Pd(dppf)Cl₂ (1.5 mg, 0.02 mmol) and KOAc (129.4 mg, 1.32 mmol) under argon protection. The reaction mixture was stirred at 100°C using an oil bath for 6 h, then concentrated. The residue was purified by silica gel flash column chromatography (PE/EtOAc = 5:1) to afford the titled compound as purple solid (135 mg, 94.7% yield).

Synthesis of 3-(5-bromothiophen-2-yl)-6-methyl-1,2,4,5-tetrazine (S13)

To a solution of 5-brono-thiophene-2-carbonitrile (200 mg, 1.06 mmol) in CH₃CN (4 mL) was added *N*-acetyl-L-cysteine (174 mg, 1.06 mmol) under argon protection. The reaction solution was cooled to 0 °C using an ice bath and the hydrazine hydrate (852 μ L, 16.96 mmol) was added dropwise, and then the reaction mixture was stirred at 40 °C using an oil bath for 16 h. Upon completion, the reaction solution was cooled to 0 °C, then a water solution of sodium nitrite (904 mg, 10.6 mmol) was slowly added, followed by slow addition of 2 N HCl during which the solution was stirred intensely and turned bright red, and gas evolved. Addition of 2 N HCl continued until gas evolution ceased and the pH value was 3-4. Then the reaction mixture was extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified by silica gel flash column chromatography to afford the titled compound as purple solid (75 mg, 27.5% yield). ¹H NMR (400MHz, CDCl₃) δ 8.00 (d, *J* = 4.0 Hz, 1H), 7.21 (d, *J* = 4.0 Hz, 1H), 3.04 (s, 3H).

Synthesis of (*E*)-3-(2-(5-bromothiophen-2-yl)vinyl)-6-methyl-1,2,4,5-tetrazine (S14)

To a solution of 1,1,1,3,3,3-hexafluoro-2-propanol (201.5 μ L, 1.92 mmol) in dry THF (10 mL) was added 1.6 M n-BuLi (1.2 mL, 1.92 mmol) at -20 °C under argon protection. The reaction was stirred for 30 min at -20 °C and further cooled to -30 °C. The solution of THF containing 5-bromothiophene-2-carbaldehyde (100 mg, 0.52 mmol) and **S8** (200 mg, 0.82 mmol) was added to the mixture dropwise and stirred for 8 h at -30 °C. The reaction mixture was quenched by H₂O (20 mL) and extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by silica gel flash column chromatography to afford the titled compound as purple solid (82.5 mg,

48.2% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, J = 15.9 Hz, 1H), 7.14 (s, 1H), 7.11 – 7.07 (m, 1H), 7.06 (d, J = 3.9 Hz, 1H), 3.03 (s, 3H).

Synthesis of (*E*)-3-(2-(5'-bromo-[2,2'-bithiophen]-5-yl)vinyl)-6-methyl-1,2,4,5-tetrazine (S15)

To a solution of 1,1,1,3,3,3-hexafluoro-2-propanol (201.5 µL, 1.92 mmol) in dry THF (10 mL) was added 1.6 M n-BuLi (1.2 mL, 1.92 mmol) at -20 °C under argon protection. The reaction was stirred for 30 min at -20 °C and further cooled to -30 °C. The solution of THF containing 5'-bromo-[2,2'-bithiophene]-5-carbaldehyde (200 mg, 0.73 mmol) and **S8** (180 mg, 0.73 mmol) was added to the mixture dropwise and stirred for 8 h at -30 °C. The reaction mixture was quenched by H₂O (20 mL) and extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by silica gel flash column chromatography to afford the titled compound as purple solid (180.0 mg, 67.4% yield). ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.40 – 8.29 (m, 1H), 7.72 (dt, *J* = 5.1, 1.0 Hz, 1H), 7.62 (dt, *J* = 3.7, 0.8 Hz, 1H), 7.24 – 7.11 (m, 2H), 2.90 (s, 3H).

Synthesis of 3-methyl-6-(4-(1,2,2-triphenylvinyl)phenyl)-1,2,4,5-tetrazine (TPE-Tz1)

To a solution of (2-bromoethene-1,1,2-triyl)tribenzene (335.2 mg, 1.0 mmol) in dioxane (10 mL) was added **S5** (328 mg, 1.1 mmol), Pd(dppf)Cl₂ (2.9 mg, 0.04 mmol) and Cs₂CO₃ (971.4 mg, 3.0 mmol) under argon protection. The reaction mixture was stirred at 100°C using an oil bath for 8 h, then concentrated. The residue was purified by silica gel flash column chromatography (PE/EtOAc = 5:1) to afford the titled compound as pink solid (245 mg, 57.4% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, J = 8.5 Hz, 2H), 7.22 (s, 1H), 7.13 – 7.09 (m, 10H), 7.08 – 7.01 (m, 6H), 3.05 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.9, 164.0, 148.6, 143.3, 143.2, 143.1, 142.6, 139.9, 132.3, 131.4, 131.3, 131.3, 129.6, 127.9, 127.7, 127.3, 126.9, 126.8, 21.2; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₉H₂₃N₄ 427.1917; Found 427.1916.

Synthesis of 3-(4-(2,2-bis(4-methoxyphenyl)-1-phenylvinyl)phenyl)-6-methyl-1,2, 4,5-tetrazine (TPE-Tz2)

To a solution of **S3** (266 mg, 0.7 mmol) in 1,4-dioxane (20 mL) was added **S5** (200 mg, 0.7 mmol), Pd(dppf)Cl₂ (2.9 mg, 0.04 mmol) and Cs₂CO₃ (440 mg, 1.4 mmol) under argon protection. The reaction mixture was stirred at 100°C using an oil bath for 8 h, then concentrated. The residue was purified by silica gel flash column chromatography (PE/EtOAc = 5:1) to afford the titled compound as red solid (180 mg, 52.9% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.38 – 8.33 (m, 2H), 7.34 – 7.25 (m, 3H), 7.18 (m, 2H), 7.10 (m, 2H), 7.01 (m, 4H), 6.71 – 6.67 (m, 4H), 3.79 (s, 3H), 3.78 (s, 3H), 3.10 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.9, 164.1, 158.5, 158.4, 149.3, 143.7, 141.9, 138.2, 135. 9, 135.9, 132.7, 132.7, 132.3, 131.4, 129.2, 127.9, 127.3, 126.5, 113.3, 113.1, 55.1, 21.2; HRMS (ESI) m/z: [M+H]⁺ Calcd for C_{31H27N4O2} 487.2129; Found 487.2114.

Synthesis of (*E*)-3-methyl-6-(4-(1,2,2-triphenylvinyl)styryl)-1,2,4,5-tetrazine (TPE-Tz3)

To a solution of (2-bromoethene-1,1,2-triyl)tribenzene (204 mg, 0.61 mmol) in 1,4-dioxane (10 mL) was added **S10** (197.6 mg, 0.61 mmol), Pd(dppf)Cl₂ (1.5 mg, 0.02 mmol) and Cs₂CO₃ (592.5 mg, 1.83 mmol) under argon protection. The reaction mixture was stirred at 100°C using an oil bath for 8 h, then concentrated. The residue was purified by silica gel flash column chromatography (PE/EtOAc = 3:1) to afford the titled compound as red solid (176.6 mg, 64.0% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 16.2 Hz, 2H), 7.46 – 7.29 (m, 3H), 7.15-7.09 (m, 11H), 7.07 – 7.00 (m, 6H), 3.02 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 164.8, 146.2, 143.45, 143.34, 142.09, 140.73, 140.19, 133.11, 132.03, 131.40, 131.37, 131.34, 127.90, 127.9, 127.7, 127.5, 126.8, 126.7, 126.7, 120.1, 21.2; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₁H₂₅N4 453.2001; Found 453.2035.

Synthesis of (*E*)-3-(4-(2,2-bis(4-methoxyphenyl)-1-phenylvinyl)styryl)-6-methyl-1,2,4,5-tetrazine (TPE-Tz4)

To a solution of S3 (90 mg, 0.23 mmol) in 1,4-dioxane (10 mL) was added S10

(81 mg, 0.25 mmol), Pd(dppf)Cl₂ (1.5 mg, 0.02 mmol) and Cs₂CO₃ (147.60 mg, 0.45 mmol) under argon protection. The reaction mixture was stirred at 100°C using an oil bath for 8 h, then concentrated. The residue was purified by silica gel flash column chromatography (PE/EtOAc = 5:1) to afford the titled compound as red solid (48.6 mg, 41.69% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.25 (d, *J* = 16.2 Hz, 1H), 7.49 – 7.44 (m, 2H), 7.39 (dd, *J* = 16.3, 1.7 Hz, 1H), 7.19 – 7.11 (m, 5H), 7.08 (d, *J* = 6.4 Hz, 2H), 7.04 – 6.95 (m, 4H), 6.75 – 6.64 (m, 4H), 3.79 (s, 3H), 3.77 (s, 3H), 3.07 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 166.2, 164.9, 158.45, 158.3, 146.88, 143.9, 141.4, 140.8, 138.5, 136.1, 132.8, 132.8, 132.7, 132.1, 131.5, 127.9, 127.6, 126.4, 119.9, 113.3, 113.1, 55.2, 55.1, 21.2; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₃H₂₉N₄O₂ 513.2285; Found 513.2286.

Synthesis of 3-(3-(2,2-bis(4-methoxyphenyl)-1-phenylvinyl)phenyl)-6-methyl-1,2,4,5-tetrazine (TPE-Tz5)

To a solution of **S3** (266 mg, 0.7 mmol) in 1,4-dioxane (20 mL) was added **S7** (200 mg, 0.7 mmol), Pd(dppf)Cl₂ (2.9 mg, 0.04 mmol) and Cs₂CO₃ (440 mg, 1.4 mmol) under argon protection. The reaction mixture was stirred at 100°C using an oil bath for 8 h, then concentrated. The residue was purified by silica gel flash column chromatography (PE/EtOAc = 5:1) to afford the titled compound as red solid (201 mg, 59.1% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.39 – 8.26 (m, 2H), 7.35 (m, 2H), 7.19 – 7.08 (m, 5H), 7.06 – 6.97 (m, 4H), 6.74 – 6.61 (m, 4H), 3.78 (d, *J* = 1.8 Hz, 3H), 3.73 (d, *J* = 2.0 Hz, 3H), 3.08 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.1, 164.1, 158.3, 158.2, 145.8, 143.6, 141.3, 138.3, 135.9, 135.9, 135.7, 132.7, 132.6, 131.4, 131.4, 130.8, 128.7, 127.9, 126.4, 125.7, 113.2, 113.1, 55.1, 55.1, 21.1; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₁H₂₇N₄O₂ 487.2129; Found 487.2122.

Synthesis of (E)-3-(3-(2,2-bis(4-methoxyphenyl)-1-phenylvinyl)styryl)-6-methyl-1,2,4,5-tetrazine (TPE-Tz6)

To a solution of **S3** (90 mg, 0.23 mmol) in 1,4-dioxane (10 mL) was added **S12** (81 mg, 0.25 mmol), Pd(dppf)Cl₂ (1.5 mg, 0.02 mmol) and Cs₂CO₃ (147.60 mg, 0.45 mmol) under argon protection. The reaction mixture was stirred at 100°C using an oil bath for

8 h, then concentrated. The residue was purified by silica gel flash column chromatography (PE/EtOAc = 5:1) to afford the titled compound as red solid (54 mg, 46.2% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.19 – 8.12 (m, 1H), 7.44 (d, *J* = 7.5 Hz, 2H), 7.27 – 7.20 (m, 2H), 7.19 – 7.07 (m, 6H), 7.01 (td, *J* = 9.0, 4.3 Hz, 4H), 6.70 (m, 4H), 3.79 (s, 3H), 3.77 (s, 3H), 3.07 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 164.8, 158.3, 158.2, 145.2, 143.8, 141.2, 141.0, 138.4, 136.1, 134.6, 133.4, 132.6, 132.6, 131.4, 131.2, 128.4, 127.9, 127.9, 126.4, 125.8, 120.2, 113.3, 113.1, 55.2, 55.1, 21.2; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₃H₂₉N4O₂ 513.2285; Found 513.2280.

Synthesis of 4,4'-(2-(4-bromophenyl)-2-phenylethene-1,1-diyl)bismethoxybenzene (S16)

To a solution of 4,4'-dimethoxybenzophenone (2.0 mg, 8.26 mmol) in dry THF (20 mL) was added 4-bromobenzophenon (2.34 g, 9.0 mmol) and zinc powder (3.1 g, 33.0 mmol) under argon protection. The reaction solution was cooled to 0 °C using ice bath and 1 M TiCl₄ (33.0 mL, 33.0 mmol) was added dropwise. The reaction mixture was stirred at 0 °C for 4 h, then quenched by water. The reaction mixture was extracted with DCM. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified by silica gel flash column chromatography (PE/EtOAc = 10:1) to afford the titled compound as white solid (1.6 g, 41.1% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.17 (m, 2H), 7.12 – 7.06 (m, 4H), 6.99 (dt, *J* = 7.2, 1.6 Hz, 3H), 6.95 – 6.85 (m, 4H), 6.68 – 6.57 (m, 4H), 3.75 (s, 3H), 3.72 (s, 3H).

Synthesis of 2-(4-(2,2-bis(4-methoxyphenyl)-1-phenylvinyl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (S17)

To a solution of **S16** (600 mg, 1.26 mmol) in dry 1,4-dioxane (15 mL) was added bis(pinacolato)diboron (186 mg, 1.92 mmol), Pd(dppf)Cl₂ (9.2 mg, 0.012 mmol) and KOAc (378 mg, 3.78 mmol) under argon protection. The reaction mixture was stirred at 80°C using an oil bath for 8 h, then concentrated. The residue was purified by silica gel flash column chromatography (PE/EtOAc = 5:1) to afford the titled compound as yellow solid (414 mg, 63.3% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.48 (m, 2H), 7.09 – 7.05 (m, 3H), 7.04 – 6.97 (m, 4H), 6.92 (dd, *J* = 8.7, 1.5 Hz, 4H), 6.65 – 6.57 (m, 4H), 3.73 (s, 3H), 3.72 (s, 3H), 1.31 (s, 12H).

Synthesis of 3-(4'-(2,2-bis(4-methoxyphenyl)-1-phenylvinyl)-[1,1'-biphenyl]-4-yl) -6-methyl-1,2,4,5-tetrazine (TPE-Tz7)

To a solution of **S17** (50 mg, 0.1 mmol) in 1,4-dioxane (5 mL) was added **S4** (24.2 mg, 0.1 mmol), Pd(dppf)Cl₂ (1.5 mg, 0.02 mmol) and Cs₂CO₃ (63 mg, 0.2 mmol) under argon protection. The reaction mixture was stirred at 100°C using an oil bath for 8 h, then concentrated. The residue was purified by silica gel flash column chromatography (PE/EtOAc = 5:1) to afford the titled compound as red solid (22 mg, 40.6% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.61 (d, *J* = 8.6 Hz, 2H), 7.77 (d, *J* = 8.6 Hz, 2H), 7.44 (d, *J* = 8.4 Hz, 2H), 7.12 (d, *J* = 8.2 Hz, 5H), 7.06 (dd, *J* = 7.8, 1.9 Hz, 2H), 6.99 (d, *J* = 8.9 Hz, 2H), 6.94 (d, *J* = 8.8 Hz, 2H), 6.65 (dd, *J* = 10.9, 8.8 Hz, 4H), 3.74 (s, 3H), 3.73 (s, 3H), 3.09 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 136.3, 132.8, 132.7, 132.1, 131.6, 128.4, 127.9, 127.6, 126.4, 126.3, 113.3, 113.1, 55.2, 21.2; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₇H₃₁N4O₂ 563.2442; Found 563.2433.

Synthesis of 3-(5-(4-(2,2-bis(4-methoxyphenyl)-1-phenylvinyl)phenyl)thiophen-2-yl)-6-methyl-1,2,4,5-tetrazine (TPE-Tz8)

To a solution of **S17** (73 mg, 0.14 mmol) in 1,4-dioxane (5 mL) was added **S13** (36.1 mg, 0.14 mmol), Pd(dppf)Cl₂ (1.5 mg, 0.02 mmol) and Cs₂CO₃ (91.2 mg, 0.28 mmol) under argon protection. The reaction mixture was stirred at 100°C using an oil bath for 8 h, then concentrated. The residue was purified by silica gel flash column chromatography (PE/EtOAc = 5:1) to afford the titled compound as red solid (24.2 mg, 30.4% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 4.0 Hz, 1H), 7.44 (d, *J* = 8.5 Hz, 2H), 7.37 (d, *J* = 4.0 Hz, 1H), 7.16 – 7.01 (m, 7H), 6.96 (dd, *J* = 18.7, 8.8 Hz, 3H), 6.65 (dd, *J* = 15.2, 8.8 Hz, 4H), 3.74 (d, *J* = 4.3 Hz, 7H), 3.02 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.4, 162.1, 158.4, 158.2, 151.5, 145.4, 144.0, 141.1, 138.4, 136.1, 136.1, 133.8, 132.7, 132.7, 132.6, 132.6, 132.6, 132.2, 132.2, 131.5, 131.4, 130.9, 127.9, 127.7, 126.4, 125.4, 124.5, 114.7, 113.3, 113.1, 113.0, 55.2, 55.1, 21.2; HRMS (ESI) m/z: [M+H]⁺ Calcd for C35H29N4O2S 569.1933; Found 569.1946.

Synthesis of (*E*)-3-(2-(5-(4-(2,2-bis(4-methoxyphenyl)-1-phenylvinyl)phenyl)thio phen-2-yl)vinyl)-6-methyl-1,2,4,5-tetrazine (TPE-Tz9)

To a solution of **S17** (42 mg, 0.08 mmol) in 1,4-dioxane (5 mL) was added **S14** (23.0 mg, 0.08 mmol), Pd(dppf)Cl₂ (1.5 mg, 0.02 mmol) and Cs₂CO₃ (52.5 mg, 0.16 mmol) under argon protection. The reaction mixture was stirred at 100 °C using an oil bath for 8 h, then concentrated. The residue was purified by silica gel flash column chromatography (PE/EtOAc = 3:1) to afford the titled compound as red solid (12.1 mg, 25.5% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.33 (dd, *J* = 15.9, 0.6 Hz, 1H), 7.38 (d, *J* = 8.5 Hz, 2H), 7.28 (d, *J* = 3.9 Hz, 1H), 7.13 – 7.09 (m, 3H), 7.04 (m, 4H), 6.95 (dd, *J* = 18.1, 8.8 Hz, 5H), 6.65 (dd, *J* = 14.3, 8.8 Hz, 5H), 3.74 (s, 3H), 3.73 (s, 3H), 3.02 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.9, 164.9, 158.3, 158.2, 147.7, 144.9, 144.0, 140.9, 139.5, 138.4, 136.2, 133.6, 132.7, 132.6, 132.3, 132.1, 131.5, 131.1, 127.9, 126.3, 125.2, 123.9, 118.8, 113.2, 113.1, 55.2, 55.1, 21.2; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₇H₃₁N4O₂S 595.2162; Found 595.2203.

Synthesis of (*E*)-3-(2-(5'-(4-(2,2-bis(4-methoxyphenyl)-1-phenylvinyl)phenyl)-[2,2'-bithiophen]-5-yl)vinyl)-6-methyl-1,2,4,5-tetrazine (TPE-Tz10)

To a solution of **S17** (129 mg, 0.25 mmol) in 1,4-dioxane (15 mL) was added **S15** (100 mg, 0.27 mmol), Pd(dppf)Cl₂ (1.5 mg, 0.02 mmol) and Cs₂CO₃ (242 mg, 0.75 mmol) under argon protection. The reaction mixture was stirred at 100 °C using an oil bath for 8 h, then concentrated. The residue was purified by silica gel flash column chromatography (PE/EtOAc = 2:1) to afford the titled compound as red solid (42.4mg, 26.1% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.32 (d, *J* = 15.8 Hz, 1H), 7.34 (d, *J* = 8.4 Hz, 2H), 7.22 – 7.16 (m, 3H), 7.15 – 7.09 (m, 5H), 7.06 – 7.00 (m, 4H), 6.97 (d, *J* = 8.7 Hz, 2H), 6.93 (d, *J* = 8.6 Hz, 2H), 6.74 – 6.55 (m, 4H), 3.74 (s, 3H), 3.73 (s, 3H), 3.02 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.9, 164.8, 158.3, 144.7, 140.7, 136.2, 133.2, 132.7, 132.3, 132.1, 131.5, 127.8, 126.3, 125.8, 124.9, 124.3, 123.8, 118.9, 113.2, 113.0, 55.1, 55.1, 21.2; HRMS (ESI) m/z: [M+H]⁺ Calcd for C41H33N4O2S2 651.1844; Found 651.1868.

Synthesis of 4-(2,2-bis(4-methoxyphenyl)-1-phenylvinyl)benzaldehyde (S18)

To a solution of **S3** (200 mg, 0.5 mmol) in 1,4-dioxane (15 mL) was added 4formylphenylboronic acid (91.0 mg, 0.6 mmol), Pd(dppf)Cl₂ (1.5 mg, 0.02 mmol) and Cs₂CO₃ (328.0 mg, 1.0 mmol) under argon protection. The reaction mixture was stirred at 100 °C using an oil bath for 8 h, then concentrated. The residue was purified by silica gel flash column chromatography (PE/EtOAc = 5:1) to afford the titled compound as yellow solid (197.9 mg, 93.0% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.89 (s, 1H), 7.60 (d, *J* = 8.3 Hz, 2H), 7.19 – 7.07 (m, 5H), 7.04 – 6.97 (m, 2H), 6.94 – 6.89 (m, 4H), 6.65 – 6.60 (m, 4H), 3.73 (s, 3H), 3.73 (s, 3H).

Synthesis of (*E*)-2-(4-(2,2-bis(4-methoxyphenyl)-1-phenylvinyl)styryl)-5bromothiophene (S19)

To a solution of **S18** (198 mg, 0.47 mmol) in dry THF (15 mL) was added diethyl ((5-bromothiophen-2-yl)methyl)phosphonate (176.9 mg, 0.56 mmol). The reaction solution was cooled to 0 °C using an ice bath and then t-BuOK (74.0 mg, 0.66 mmol) was added. The reaction mixture was stirred at room temperature for 3 h, then concentrated. The residue was purified by silica gel flash column chromatography (PE/EtOAc = 10:1) to afford the titled compound as yellow solid (211.2 mg, 77.4% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.22 (d, *J* = 8.1 Hz, 2H), 7.15 (d, *J* = 7.5 Hz, 3H), 7.09 – 6.95 (m, 10H), 6.80 – 6.76 (m, 2H), 6.72 – 6.64 (m, 4H), 3.79 (s, 3H), 3.78 (s, 3H).

Synthesis of 2-(6-(pyridin-4-yl)-1,2,4,5-tetrazin-3-yl)ethan-1-ol (S20)

To a solution of 4-cyanopyridine (200)mg, 1.92 mmol) 3in hydroxypropanenitrile (675 µL, 9.6 mmol) was added N-acetyl-L-cysteine (313.5 mg, 1.92 mmol) under argon protection. The reaction solution was cooled to 0 °C using an ice bath and the hydrazine hydrate (1.49 mL, 30.7 mmol) was added dropwise, and then the reaction mixture was stirred at 40 °C using an oil bath for 16 h. Upon completion, the reaction solution was cooled to 0 °C, then a water solution of sodium nitrite (1.63 g, 19.2 mmol) was slowly added, followed by slow addition of 2 N HCl during which the solution was stirred intensely and turned bright red, and gas evolved. Addition of 2 N HCl continued until gas evolution ceased and the pH value was 3-4. Then the reaction mixture was extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified by silica gel flash column chromatography to afford the titled compound as purple solid (136 mg, 34.9% yield). ¹H NMR (400 MHz, DMSO- d_6) δ 8.88 (d, J = 6.1Hz, 2H), 8.34 (d, J = 6.2 Hz, 2H), 4.80 (t, J = 5.9 Hz, 1H), 3.99 (q, J = 5.5, 5.0 Hz, 2H), 3.45 (t, J = 6.3 Hz, 2H).

Synthesis of 2-(6-(pyridin-4-yl)-1,2,4,5-tetrazin-3-yl)ethyl methanesulfonate (S21)

To a solution of **S20** (320 mg, 1.57 mmol) in dry DCM (30 mL) was added TEA (175.3 mg, 1.73 mmol) under argon protection. The reaction solution was cooled to 0 °C using an ice bath and the methanesulfonyl chloride (282 μ L, 1.73 mmol) was added dropwise, and then the reaction mixture was stirred at room temperature for 2 h, then concentrated. The residue was purified by silica gel flash column chromatography (DCM/MeOH = 20:1) to afford the titled compound as purple solid (208 mg, 47.2% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.96 (d, *J* = 5.3 Hz, 2H), 8.50 (d, *J* = 5.1 Hz, 2H),

4.98 (t, *J* = 6.0 Hz, 2H), 3.93 (t, *J* = 6.0 Hz, 2H), 3.08 (s, 3H).

Synthesis of 3-((E)-2-(5-((E)-4-(2,2-bis(4-methoxyphenyl)-1-phenylvinyl)styryl)thiophen-2-yl)vinyl)-6-(pyridin-4-yl)-1,2,4,5-tetrazine (TPE-Tz11)

To a 10 mL microwave reaction tube equipped with a stir bar, S19 (56 mg, 0.1 mmol), S21 (24 mg, 0.08 mmol), Q-phos (9.0 mg, 0.01 mmol), Pd₂(dba)₃ (8.0 mg, 0.008 mmol) and N,N-dicyclohexylmethylamine (51.0 mg, 0.26 mmol) were dissolved in anhydrous DMF (4 mL). The reaction was protected with argon gas and then heated by microwave irradiation (65 °C, 60 min). The reaction solution was cooled to room temperature and EtOAc (30 mL) was added before washing with water (3×20 mL). The organic layer was dried over Na₂SO₄ and evaporated. The residue was purified by a preparative TLC plate to afford the titled compound as orange solid (20.4 mg, 35.5% yield). ¹H NMR (500 MHz, Acetone- d_6) δ 8.92 (d, J = 5.2 Hz, 2H), 8.52 (d, J = 15.8Hz, 1H), 8.44 (d, J = 5.1 Hz, 2H), 7.59 (d, J = 3.8 Hz, 1H), 7.48 – 7.38 (m, 3H), 7.33 – 7.26 (m, 2H), 7.15 (dd, J = 13.3, 7.6 Hz, 4H), 7.11 – 6.92 (m, 8H), 6.72 (dd, J = 19.6, 8.2 Hz, 4H), 3.76 (s, 3H), 3.74 (s, 3H); ¹³C NMR (101 MHz, Acetone-*d*₆) δ 165.6, 161.6, 158.6, 158.4, 151.0, 147.1, 144.7, 144.217, 140.9, 139.9, 139.2, 138.8, 136.2, 136.1, 134.5, 134.3, 133.4, 132.4, 132.4, 131.7, 131.2, 130.4, 123.0, 127.8, 126.3, 126.1, 121.2, 120.8, 119.0, 113.1, 113.0, 54.5, 54.5; HRMS (ESI) m/z: [M+H]⁺ Calcd for C43H34N5O2S 684.2428; Found 684.2408.

Synthesis of 4,4'-(2,2-dibromoethene-1,1-diyl)bis(methoxybenzene) (S22)

To a solution of carbon tetrabromide (1.1 g, 3.3 mmol) in toluene (30 mL) was added triphenylphosphine (1.7 mg, 6.6 mmol) under argon protection. The reaction solution was cooled to 0 °C using an ice bath and then bis(4-methoxyphenyl)methanone (400 mg, 1.6 mmol) was added. The reaction mixture was stirred at 100 °C for 24 h, then concentrated. The residue was purified by silica gel flash column chromatography (PE/EtOAc = 10:1) to afford the titled compound as yellow solid (112 mg, 17.04% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.26 – 7.23 (m, 4H), 6.90 – 6.87 (m, 4H), 3.84 (s, 6H).

Synthesis of 6,6'-((2,2-bis(4-methoxyphenyl)ethene-1,1-diyl)bis(3,1-phenylene)) bis(3-methyl-1,2,4,5-tetrazine) (TPE-Tz12)

To a solution of **S22** (40 mg, 0.1 mmol) in 1,4-dioxane (3 mL) was added **S7** (60 mg, 0.2 mmol), Pd(dppf)Cl₂ (1.5 mg, 0.02 mmol) and Cs₂CO₃ (52 mg, 0.4 mmol) under argon protection. The reaction mixture was stirred at 100 °C using an oil bath for 8 h, then concentrated. The residue was purified by silica gel flash column chromatography (PE/EtOAc = 3:1) to afford the titled compound as red solid (21.2mg, 18.3% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.34 – 8.29 (m, 4H), 7.33 (dd, *J* = 5.2, 0.8 Hz, 4H), 7.00 (d, *J* = 8.8 Hz, 4H), 6.63 (d, *J* = 8.8 Hz, 4H), 3.70 (s, 6H), 3.02 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 167.1, 164.0, 158.5, 145.1, 142.6, 137.3, 135.7, 135.5, 132.7, 131.6, 130.7, 128.9, 126.0, 113.3, 55.1, 21.1; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₄H₂₉N₈O₂ 581.2408; Found 581.2408.

Synthesis of 6,6'-((2,2-bis(4-methoxyphenyl)ethene-1,1-diyl)bis(4,1-phenylene)) bis(3-methyl-1,2,4,5-tetrazine) (TPE-Tz13)

To a solution of **S22** (40 mg, 0.1 mmol) in 1,4-dioxane (3 mL) was added **S5** (60 mg, 0.2 mmol), Pd(dppf)Cl₂ (1.5 mg, 0.02 mmol) and Cs₂CO₃ (52 mg, 0.4 mmol) under argon protection. The reaction mixture was stirred at 100 °C using an oil bath for 8 h, then concentrated. The residue was purified by silica gel flash column chromatography (PE/EtOAc = 3:1) to afford the titled compound as red solid (24.4 mg, 21.1% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, *J* = 8.5 Hz, 4H), 7.27 (d, *J* = 2.0 Hz, 2H), 7.25 (d, *J* = 0.9 Hz, 2H), 7.00 (d, *J* = 8.8 Hz, 4H), 6.66 (d, *J* = 8.8 Hz, 4H), 3.74 (s, 6H), 3.06 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 166.9, 164.0, 158.8, 148.61, 143.6, 137.2, 135.4, 132.8, 132.4, 130.1, 129.6, 127.6, 116.3, 113.4, 55.2, 21.2; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₄H₂₉N₈O₂ 581.2335; Found 581.2369.

Synthesis of 4-(2,2-dibromovinyl)benzonitrile (S23)

To a solution of carbon tetrabromide (1.0 g, 3.0 mmol) in DCM (30 mL) was added triphenylphosphine (1.6 g, 6.1 mmol) under argon protection. The reaction solution was cooled to 0 °C using an ice bath and then benzaldehyde (200 mg, 1.5 mmol) was added. The reaction mixture was stirred at room temperature for 1 h, then concentrated. The residue was purified by silica gel flash column chromatography (PE/EtOAc = 20:1) to afford the titled compound as yellow oil (395 mg, 90.2% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.59 (m, 4H), 7.49 (s, 1H).

Synthesis of 4-(2,2-bis(4-methoxyphenyl)vinyl)benzonitrile (S24)

To a solution of **S23** (200 mg, 0.7 mmol) in a mixture of PEG400 and water (V_{PEG400} : $V_{H_{2O}} = 1:3$) was added 4-methoxyphenylboronic acid (265 mg, 1.7 mmol), Pd(OAc)₂ (6.3 mg, 0.04 mmol) and K₃PO₄ (296 mg, 1.4 mmol). The reaction mixture was stirred at 40 °C using an oil bath for 24 h under argon protection. Then the reaction was quenched with H₂O (10 mL) and extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was isolated by silica gel flash column chromatography to afford the titled compound (157.6 mg, 66.2% yield) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 8.5 Hz, 2H), 7.26 (s, 1H), 7.24 (s, 1H), 7.10 – 7.01 (m, 4H), 6.86 (d, *J* = 2.7 Hz, 2H), 6.84 (d, *J* = 2.7 Hz, 2H), 6.78 (s, 1H), 3.83 (s, 3H), 3.81 (s, 3H).

Synthesis of 4-(1-bromo-2,2-bis(4-methoxyphenyl)vinyl)benzonitrile (S25)

To a solution of **S24** (500 mg, 1.5 mmol) in CCl₄ (20 mL) was added NBS (391.0 mg, 2.2 mmol). The reaction mixture was stirred at 80 °C using an oil bath for 3 h and then concentrated. The residue was isolated by silica gel flash column chromatography to afford the titled compound (582.4 mg, 94.6% yield) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 8.5 Hz, 2H), 7.26 (s, 2H), 7.18 – 7.14 (m, 4H), 7.01 (d, *J* = 2.7 Hz, 2H), 6.98 (d, *J* = 2.7 Hz, 2H), 3.86 (s, 3H), 3.84 (s, 3H).

Synthesis of 4,4'-(2,2-bis(4-methoxyphenyl)ethene-1,1-diyl)dibenzonitrile (S26)

To a solution of **S25** (620 mg, 1.47 mmol) in 1,4-dioxane (20 mL) was added 4cyanophenylboronic acid (217 mg, 1.47 mmol), Pd(dppf)Cl₂ (11 mg, 0.01 mmol) and Cs₂CO₃ (1.43 g, 4.4 mmol) under argon protection. The reaction mixture was stirred at 100 °C using an oil bath for 8 h, then concentrated. The residue was purified by silica gel flash column chromatography (PE/EtOAc = 5:1) to afford the titled compound as yellow solid (550 mg, 84.2% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.8 (d, *J* = 8.4 Hz, 4H), 7.28 (d, *J* = 8.2 Hz, 4H), 7.12 (d, *J* = 8.9 Hz, 4H), 6.82 (d, *J* = 8.8 Hz, 4H), 3.84 (s, 6H).

Synthesis of 4,4'-(2,2-bis(4-methoxyphenyl)ethene-1,1-diyl)dibenzaldehyde (S27)

To a solution of **S26** (300 mg, 0.67 mmol) in 75% HCOOH (12 mL) was added Al-Ni (3.23 g, 4.47 mmol) under argon protection. The reaction mixture was stirred at 100 °C using an oil bath for 5 h. The mixture was extracted with EtOAc (3×20 mL).

The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by silica gel flash column chromatography (PE/EtOAc = 5:1) to afford the titled compound as luminous yellow solid (200 mg, 65.8% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.90 (s, 2H), 7.63 (d, *J* = 8.4 Hz, 4H), 7.15 (d, *J* = 8.2 Hz, 4H), 6.92 (d, *J* = 8.9 Hz, 4H), 6.64 (d, *J* = 8.8 Hz, 4H), 3.74 (s, 6H).

Synthesis of 6,6'-((1*E*,1'*E*)-((2,2-bis(4-methoxyphenyl)ethene-1,1-diyl)bis(4,1-phenylene))bis(ethene-2,1-diyl))bis(3-methyl-1,2,4,5-tetrazine) (TPE-Tz14)

To a solution of 1,1,1,3,3,3-hexafluoro-2-propanol (201.5 µL, 1.92 mmol) in dry THF (10 mL) was added 1.6 M n-BuLi (1.2 mL, 1.92 mmol) at -20 °C under argon protection. The reaction was stirred for 30 min at -20 °C and further cooled to -30 °C. The solution of THF containing **S27** (200 mg, 0.44 mmol) and **S8** (182 mg, 0.98 mmol) was added to the mixture dropwise and stirred for 8 h at -30 °C. The reaction mixture was quenched by H₂O (20 mL) and extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by silica gel flash column chromatograph (PE/EtOAc = 2:1) to afford the title compound as red solid (68.4 mg, 24.3% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, *J* = 16.3 Hz, 2H), 7.44 (d, *J* = 8.1 Hz, 4H), 7.36 (d, *J* = 16.2 Hz, 2H), 7.10 (d, *J* = 8.0 Hz, 4H), 6.97 (d, *J* = 8.7 Hz, 4H), 6.66 (d, *J* = 8.8 Hz, 4H), 3.74 (s, 6H), 3.03 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 164.9, 158.6, 146.4, 142.5, 140.7, 137.6, 135.7, 133.1, 132.8, 132.1, 127.7, 120.1, 113.3, 55.2, 21.2; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₈H₃₃N₈O₂ 633.2682; Found 633.2648.

Synthesis of 5,5'-((1*E*,1'*E*)-((2,2-bis(4-methoxyphenyl)ethene-1,1-diyl)bis(4,1-phenylene))bis(ethene-2,1-diyl))bis(2-bromothiophene) (S28)

To a solution of **S27** (90 mg, 0.2 mmol) in dry THF (15 mL) was added diethyl ((5-bromothiophen-2-yl)methyl)phosphonate (156.6 mg, 0.5 mmol). The reaction solution was cooled to 0 °C using an ice bath and then t-BuOK (56.3 mg, 0.5 mmol) was added. The reaction mixture was stirred at room temperature for 3 h, then concentrated. The residue was purified by silica gel flash column chromatography (PE/EtOAc = 10:1) to afford the titled compound as yellow solid (48.6 mg, 31.7% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.17 (d, *J* = 8.0 Hz, 4H), 7.04 – 6.88 (m, 12H), 6.75-6.72 (m, 3H), 6.70 – 6.61 (m, 5H), 3.74 (s, 6H).

Synthesis of 6,6'-((1*E*,1'*E*)-(((1*E*,1'*E*)-((2,2-bis(4-methoxyphenyl)ethene-1,1-diyl) bis(4,1-phenylene))bis(ethene-2,1-diyl))bis(thiophene-5,2-diyl))bis(ethene-2,1-diyl))bis(3-(pyridin-4-yl)-1,2,4,5-tetrazine) (TPE-Tz15)

To a 10 mL microwave reaction tube equipped with a stir bar, S28 (54 mg, 0.09 mmol), S21 (66 mg, 0.24 mmol), Q-phos (16.6 mg, 0.024 mmol), Pd₂(dba)₃ (8.8 mg, 0.01 mmol) and N,N-dicyclohexylmethylamine (72.8 mg, 0.36 mmol) were dissolved in anhydrous DMF (4 mL). The reaction was protected with argon gas and then heated by microwave irradiation (65 °C, 60 min). The reaction solution was cooled to room temperature and EtOAc (30 mL) was added before washing with water (3×20 mL). The organic layer was dried over Na₂SO₄ and evaporated. The residue was purified by a preparative TLC plate to afford the titled compound as red solid (32.0 mg, 35.2% yield). ¹H NMR (400 MHz, DMSO- d_6) δ 8.90 – 8.84 (m, 2H), 8.44 (d, J = 15.9 Hz, 1H), 8.35 – 8.29 (m, 2H), 7.62 (d, J = 3.8 Hz, 1H), 7.46 – 7.19 (m, 10 H), 7.13 (t, J = 3.6 Hz, 2H), 7.05 - 6.82 (m, 12H), 6.77 (d, J = 15.4 Hz, 1H), 6.72 - 6.65 (m, 5H), 3.65 (s, 6H); ¹³C NMR (151 MHz, Acetone) δ 166.4, 162.5, 159.5, 151.9, 147.9, 145.9, 145.4, 144.9, 142.1, 140.7, 140.2, 139.3, 137.0, 135.6, 135.5, 135.2, 134.3, 133.4, 133.4, 133.2, 132.7, 132.6, 131.9, 131.3, 129.4, 128.9, 128.6, 127.8, 127.3, 127.1, 126.8, 126.6, 125.5, 122.1, 121.9, 121.7, 119.9, 114.0, 114.0, 111.1, 55.4; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C58H42N10O2S2Na 997.2826; Found 997.2893.

Synthesis of ((6aR,7aS)-1-methyl-4-(4-(1,2,2-triphenylvinyl)phenyl)-6,6a,7,7a,8,9-hexahydro-5*H*-cyclopropa[5,6]cycloocta[1,2-d]pyridazin-7-yl)methanol (TPE-Pz1)

To a solution of **TPE-Tz1** (20 mg, 0.046 mmol) in CH₃CN (5 mL) was added **BCN** (14.0 mg, 0.092). The reaction mixture was stirred at room temperature for 30 min, then concentrated. The residue was purified by a preparative TLC plate (DCM/MeOH = 20:1) to afford the titled compound as white solid (22.4 mg, 88.9% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.17 (d, *J* = 8.3 Hz, 2H), 7.12 – 7.01 (m, 17H), 3.70 (d, *J* = 7.8 Hz, 1H), 3.02 – 2.98 (m, 1H), 2.86 – 2.80 (m, 2H), 2.73 (s, 4H), 2.45 –

2.32 (m, 1H), 2.14 – 2.03 (m, 1H), 1.33 – 1.27 (m, 2H), 1.16 – 1.17 (m, 1H), 0.96 – 0.87 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 160.8, 157.5, 144.0, 143.7, 143.6, 143.4, 141.6, 140.8, 140.5, 139.6, 135.9, 131.5, 131.4, 131.4, 131.3, 128.6, 127.7, 127.7, 127.7, 126.6, 126.6, 126.6, 59.4, 29.7, 29.4, 27.9, 27.3, 20.6; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₉H₃₇N₂O 549.2900; Found 549.2907.

Synthesis of ((6aS,7aR)-1-(4-(2,2-bis(4-methoxyphenyl)-1-phenylvinyl)phenyl)-4methyl-6,6a,7,7a,8,9-hexahydro-5H-cyclopropa[5,6]cycloocta[1,2-d]pyridazin-7yl)methanol (TPE-Pz2)

To a solution of **TPE-Tz2** (20 mg, 0.041 mmol) in CH₃CN (5 mL) was added **BCN** (12.4 mg, 0.082). The reaction mixture was stirred at room temperature for 30 min, then concentrated. The residue was purified by a preparative TLC plate (DCM/MeOH = 20:1) to afford the titled compound as white solid (22.3 mg, 89.2% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.22 (d, *J* = 7.9 Hz, 2H), 7.19 – 7.08 (m, 7H), 7.01 (dd, *J* = 8.6, 4.1 Hz, 4H), 6.71 – 6.66 (m, 4H), 3.77- 3.75 (m, 9H), 3.05 (m, 1H), 2.87 (m, 2H), 2.78 (s, 4H), 2.48 – 2.38 (m, 1H), 2.14 – 2.12 (m, 1H), 1.33 – 1.31 (m, 1H), 1.18 – 1.15 (m, 1H), 0.96 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 160.9, 158.2, 158.2, 157.5, 144.6, 143.9, 140.8, 140.7, 138.8, 136.3, 136.2, 135.7, 132.7, 132.6, 131.5, 131.30, 128.6, 127.8, 126.3, 113.1, 113.1, 59.4, 55.2, 55.1, 27.9, 27.2, 20.7; HRMS (ESI) m/z: [M+H]⁺ Calcd for C41H41N2O3 609.3112; Found 609.3116.

Synthesis of ((6aR,7aS)-1-methyl-4-((*E*)-4-(1,2,2-triphenylvinyl)styryl)-6,6a,7,7a, 8,9-hexahydro-5*H*-cyclopropa[5,6]cycloocta[1,2-d]pyridazin-7-yl)methanol (TPE-Pz3)

To a solution of **TPE-Tz3** (20 mg, 0.044 mmol) in CH₃CN (5 mL) was added **BCN** (13.3 mg, 0.088). The reaction mixture was stirred at room temperature for 30 min, then concentrated. The residue was purified by a preparative TLC plate (DCM/MeOH = 20:1) to afford the titled compound as white solid (20.3 mg, 79.9% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 15.7 Hz, 1H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.17 – 6.90 (m, 18H), 3.71 (d, *J* = 7.8 Hz, 2H), 3.00 – 2.82 (m, 3H), 2.70 (s, 3H), 2.33 (p, *J* = 6.4 Hz, 2H), 1.29 (d, *J* = 19.7 Hz, 1H), 1.09 (q, *J* = 8.3 Hz, 1H), 0.92 – 0.74 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 156.9, 155.2, 144.3, 143.7, 143.7, 143.6, 141.4, 140.5, 135.6, 134.8, 131.8, 131.4, 131.4, 127.9, 127.8, 127.7, 126.6, 126.6, 126.5, 120.9, 59.5, 29.7, 27.1, 26.2, 20.9; HRMS (ESI) m/z: [M+H]⁺ Calcd for C41H39N2O

575.2984; Found 575.3018.

Synthesis of ((6aS,7aR)-1-((*E*)-4-(2,2-bis(4-methoxyphenyl)-1-phenylvinyl)styryl) -4-methyl-6,6a,7,7a,8,9-hexahydro-5*H*-cyclopropa[5,6]cycloocta[1,2-d]pyridazin-7-yl)methanol (TPE-Pz4)

To a solution of **TPE-Tz4** (20 mg, 0.04 mmol) in CH₃CN (5 mL) was added **BCN** (12.0 mg, 0.08). The reaction mixture was stirred at room temperature for 30 min, then concentrated. The residue was purified by a preparative TLC plate (DCM/MeOH = 20:1) to afford the titled compound as yellow solid (18.0 mg, 70.7% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 15.6 Hz, 1H), 7.34 – 7.29 (m, 2H), 7.25 – 7.13 (m, 1H), 7.13 – 7.07 (m, 3H), 7.05 – 6.99 (m, 4H), 6.98 – 6.89 (m, 4H), 6.69 – 6.58 (m, 4H), 3.74 (s, 3H), 3.72 (s, 4H), 3.70 (s, 1H), 3.00 – 2.81 (m, 4H), 2.69 (s, 3H), 2.35 – 2.33 (m, 2H), 1.60 (d, *J* = 6.9 Hz, 2H), 1.10 (p, *J* = 8.3 Hz, 1H), 0.82 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 158.3, 158.2, 157.1, 155.3, 145.0, 144.2, 140.7, 138.8, 136.4, 135.6, 134.5, 132.7, 131.9, 131.5, 127.9, 126.8, 126.3, 120.9, 113.2, 113.1, 59.5, 55.2, 55.2, 27.2, 26.2, 21.0; HRMS (ESI) m/z: [M+H]⁺ Calcd for C4₃H4₃N₂O₃ 635.3268; Found 635.3267.

Synthesis of ((6aS,7aR)-1-(3-(2,2-bis(4-methoxyphenyl)-1-phenylvinyl)phenyl)-4methyl-6,6a,7,7a,8,9-hexahydro-5*H*-cyclopropa[5,6]cycloocta[1,2-d]pyridazin-7yl)methanol (TPE-Pz5)

To a solution of **TPE-Tz5** (20 mg, 0.041 mmol) in CH₃CN (5 mL) was added **BCN** (12.4 mg, 0.082). The reaction mixture was stirred at room temperature for 30 min, then concentrated. The residue was purified by a preparative TLC plate (DCM/MeOH = 20:1) to afford the titled compound as white solid (19.8 mg, 79.27% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.26 (dd, *J* = 8.8, 2.7 Hz, 2H), 7.20 – 7.06 (m, 7H), 7.06 – 7.01 (m, 2H), 6.98 – 6.93 (m, 2H), 6.72 – 6.63 (m, 4H), 3.77 (d, *J* = 5.3 Hz, 6H), 3.69 – 3.67(m, 2H), 3.04 – 2.91 (m, 1H), 2.81 (d, *J* = 14.2 Hz, 1H), 2.76 (s, 3H), 2.51 (m, 1H), 2.44 – 2.33 (m, 2H), 1.62 (m, 1H), 1.30 (q, *J* = 6.8 Hz, 3H), 1.09 (t, *J* = 8.4 Hz, 1H), 0.97 – 0.54 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 161.0, 158.2, 158.0, 157.5, 144.3, 144.2, 140.6, 138.9, 137.5, 136.4, 136.1, 132.9, 132.6, 132.2, 131.5, 128.1, 127.8, 127.2, 126.2, 113.2, 113.1, 59.2, 55.2, 55.1, 27.6, 27.0, 22.4, 20.4; HRMS (ESI) m/z: [M+H]⁺ Calcd for C41H41N2O3 609.3112; Found 609.3107.

Synthesis of ((6aS,7aR)-1-((*E*)-3-(2,2-bis(4-methoxyphenyl)-1-phenylvinyl)styryl) -4-methyl-6,6a,7,7a,8,9-hexahydro-5*H*-cyclopropa[5,6]cycloocta[1,2-d]pyridazin-7-yl)methanol (TPE-Pz6)

To a solution of **TPE-Tz6** (20 mg, 0.039 mmol) in CH₃CN (5 mL) was added **BCN** (11.7 mg, 0.078). The reaction mixture was stirred at room temperature for 30 min, then concentrated. The residue was purified by a preparative TLC plate (DCM/MeOH = 20:1) to afford the titled compound as white solid (20.5 mg, 82.8% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, *J* = 15.7 Hz, 1H), 7.34 (s, 2H), 7.15 (q, *J* = 9.5, 9.0 Hz, 4H), 7.11 – 7.05 (m, 3H), 7.04 – 6.96 (m, 5H), 6.68 (t, *J* = 8.1 Hz, 4H), 3.76 (d, *J* = 14.0 Hz, 8H), 2.98 (q, *J* = 7.7, 6.7 Hz, 2H), 2.94 – 2.86 (m, 2H), 2.75 (s, 3H), 1.65 (s, 2H), 2.45 – 2.25 (m, 2H), 1.15 (t, *J* = 8.6 Hz, 1H), 0.85 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 158.1, 156.9, 155.2, 144.6, 144.0, 140.5, 140.2, 138.9, 136.3, 136.3, 136.2, 136.1, 132.6, 131.8, 131.4, 130.2, 128.2, 127.8, 126.2, 125.6, 120.8, 113.2, 113.1, 59.4, 55.2, 55.1, 27.1, 26.1, 20.8; HRMS (ESI) m/z: [M+H]⁺ Calcd for C43H43N2O3 635.3268; Found 635.3276.

Synthesis of ((6aS,7aR)-1-(4'-(2,2-bis(4-methoxyphenyl)-1-phenylvinyl)-[1,1'biphenyl]-4-yl)-4-methyl-6,6a,7,7a,8,9-hexahydro-5*H*cyclopropa[5,6]cycloocta[1,2-d]pyridazin-7-yl)methanol (TPE-Pz7)

To a solution of **TPE-Tz7** (20 mg, 0.035 mmol) in CH₃CN (5 mL) was added **BCN** (10.6 mg, 0.07). The reaction mixture was stirred at room temperature for 30 min, then concentrated. The residue was purified by a preparative TLC plate (DCM/MeOH = 20:1) to afford the titled compound as yellow solid (21.8 mg, 89.8% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.71 (d, *J* = 7.8 Hz, 2H), 7.54 (d, *J* = 7.8 Hz, 2H), 7.45 (d, *J* = 8.0 Hz, 2H), 7.14 (dt, *J* = 16.2, 8.3 Hz, 7H), 7.04 (d, *J* = 8.2 Hz, 2H), 7.00 (d, *J* = 8.2 Hz, 2H), 6.70 (dd, *J* = 11.8, 8.3 Hz, 4H), 3.81-3.79 (m, 8H), 3.08 (d, *J* = 8.2 Hz, 1H), 2.97 (m, 1H), 2.92 (s, 2H), 2.83 (s, 3H), 2.56 – 2.40 (m, 1H), 2.25 (s, 1H), 1.30 (s, 1H), 1.20 (t, *J* = 8.4 Hz, 1H), 1.01 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 160.8, 158.2, 158.1, 157.5, 144.3, 143.8, 140.9, 140.5, 138.7, 137.8, 136.4, 136.4, 132.6, 131.9, 131.5, 129.7, 127.8, 126.7, 126.3, 126.2, 113.2, 113.0, 59.5, 55.2, 55.1, 28.1, 27.2, 20.6; HRMS (ESI) m/z: [M+H]⁺ Calcd for C47H45N2O3 685.3425; Found 685.3463.

Synthesis of ((6aS,7aR)-1-(5-(4-(2,2-bis(4-methoxyphenyl)-1-phenylvinyl)phenyl) thiophen-2-yl)-4-methyl-6,6a,7,7a,8,9-hexahydro-5*H*-cyclopropa[5,6]cycloocta[1,2-d]pyridazin-7-yl)methanol (TPE-Pz8)

To a solution of **TPE-Tz8** (20 mg, 0.035 mmol) in CH₃CN (5 mL) was added **BCN** (10.6 mg, 0.07). The reaction mixture was stirred at room temperature for 30 min, then concentrated. The residue was purified by a preparative TLC plate (DCM/MeOH = 20:1) to afford the titled compound as yellow solid (22.9 mg, 94.2% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.36 (m, 2H), 7.09 (q, *J* = 7.5, 5.9 Hz, 4H), 7.06 – 7.01 (m, 3H), 7.00 – 6.95 (m, 4H), 6.95 – 6.90 (m, 4H), 6.64 (m, 4H), 3.73 (d, *J* = 4.6 Hz, 9H), 3.07 (d, *J* = 38.6 Hz, 3H), 2.89 – 2.81 (m, 1H), 2.74 (d, *J* = 4.4 Hz, 3H), 2.40 (s, 2H), 1.16 (s, 2H), 1.02 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 158.3, 158.2, 146.8, 144.2, 144.1, 140.6, 139.0, 138.6, 136.3, 136.3, 132.7, 132.0, 131.5, 131.5, 129.1, 127.8, 126.3, 125.1, 123.0, 113.2, 113.0, 59.5, 55.2, 55.1, 28.0, 27.2, 20.7; HRMS (ESI) m/z: [M+H]⁺ Calcd for C45H43N2O3S 691.2989; Found 691.2999.

Synthesis of ((6aS,7aR)-1-((*E*)-2-(5-(4-(2,2-bis(4-methoxyphenyl)-1-phenylvinyl) phenyl)thiophen-2-yl)vinyl)-4-methyl-6,6a,7,7a,8,9-hexahydro-5*H*-cyclopropa[5,6]cycloocta[1,2-d]pyridazin-7-yl)methanol (TPE-Pz9)

To a solution of **TPE-Tz9** (20 mg, 0.034 mmol) in CH₃CN (5 mL) was added **BCN** (10.1 mg, 0.068). The reaction mixture was stirred at room temperature for 30 min, then concentrated. The residue was purified by a preparative TLC plate (DCM/MeOH = 20:1) to afford the titled compound as yellow solid (21.9 mg, 91.0% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 15.2 Hz, 1H), 7.41 (d, *J* = 8.4 Hz, 2H), 7.24 (d, *J* = 3.7 Hz, 1H), 7.20 – 7.13 (m, 5H), 7.11 – 7.07 (m, 3H), 7.06 (d, *J* = 1.8 Hz, 1H), 7.03 (d, *J* = 8.7 Hz, 2H), 6.98 (d, *J* = 8.7 Hz, 2H), 6.75 – 6.63 (m, 4H), 3.80 (s, 3H), 3.79 (s, 3H), 3.77 (s, 1H), 3.16 – 2.89 (m, 4H), 2.76 (s, 3 H), 2.51 – 2.37 (s, 2H), 1.35 – 1.25 (m, 3H), 1.2 – 1.18 (m, 1H), 0.96 – 0.86 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 158.3, 158.2, 144.2, 144.1, 141.1, 140.7, 138.5, 136.3, 132.7, 132.0, 131.5, 131.5, 130.3, 127.8, 126.3, 124.9, 123.6, 113.2, 113.0, 59.5, 55.2, 55.1, 29.7, 27.2, 26.3, 20.6; HRMS (ESI) m/z: [M+H]⁺ Calcd for C47H45N2O3S 717.3145; Found 717.3184.

 $\label{eq:synthesis} Synthesis of ((6aS,7aR)-1-((E)-2-(5'-(4-(2,2-bis(4-methoxyphenyl)-1-phenylvinyl) phenyl)-[2,2'-bithiophen]-5-yl)vinyl)-4-methyl-6,6a,7,7a,8,9-hexahydro-5H-$
cyclopropa[5,6]cycloocta[1,2-d]pyridazin-7-yl)methanol (TPE-Pz10)

To a solution of **TPE-Tz10** (20 mg, 0.03 mmol) in CH₃CN (5 mL) was added **BCN** (9.0 mg, 0.13 mmol). The reaction mixture was stirred at room temperature for 30 min, then concentrated. The residue was purified by a preparative TLC plate (DCM/MeOH = 20:1) to afford the titled compound as orange solid (18.8 mg, 76.5% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, *J* = 8.0 Hz, 2H), 7.17 (s, 2H), 7.11 (q, *J* = 5.6, 5.0 Hz, 5H), 7.06 – 7.00 (m, 4H), 6.97 (d, *J* = 8.7 Hz, 2H), 6.92 (d, *J* = 8.7 Hz, 2H), 6.85 (s, 1H), 6.64 (dd, *J* = 12.9, 8.7 Hz, 4H), 3.74 (s, 3H), 3.73 (s, 3H), 3.03 (s, 5H), 2.46 (s, 2H), 1.87 – 1.51 (m, 6H), 0.87 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.3, 158.2, 144.1, 140.8, 138.9, 138.5, 136.2, 135.4, 132.7, 132.6, 132.1, 131.5, 127.8, 126.3, 125.9, 124.9, 123.8, 113.2, 113.0, 55.16, 55.13, 31.96, 29.73, 22.73; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₅₁H₄₇N₂O₃S₂ 799.2950; Found 799.2985.

Synthesis of ((6aS,7aR)-1-((E)-2-(5-((E)-4-(2,2-bis(4-methoxyphenyl)-1-phenylvinyl)styryl)thiophen-2-yl)vinyl)-4-(pyridin-4-yl)-6,6a,7,7a,8,9-hexahydro-5*H*-cyclopropa[5,6]cycloocta[1,2-d]pyridazin-7-yl)methanol (TPE-Pz11)

To a solution of **TPE-Tz11** (20 mg, 0.03 mmol) in CH₃CN (5 mL) was added **BCN** (8.8 mg, 0.06 mmol). The reaction mixture was stirred at room temperature for 30 min, then concentrated. The residue was purified by a preparative TLC plate (DCM/MeOH = 20:1) to afford the titled compound as orange solid (19.5 mg, 82.7% yield). ¹H NMR (400 MHz, DMSO) δ 8.70 (d, *J* = 6.0 Hz, 2H), 8.05 (d, *J* = 15.2 Hz, 1H), 7.49 (d, *J* = 6.0 Hz, 2H), 7.41 – 7.22 (m, 5H), 7.16 – 7.05 (m, 4H), 6.96 – 6.79 (m, 9H), 6.67 (dd, *J* = 17.3, 8.8 Hz, 4H), 3.64 (d, *J* = 6.2 Hz, 6H), 3.46 (s, 2H), 3.07 (d, *J* = 9.3 Hz, 1H), 2.91 (s, 2H), 2.67 – 2.65 (m, 1H), 2.24 (s, 1H), 1.95 (s, 1H), 1.63 (s, 2H), 0.95 – 0.80 (m, 1H), 0.66 (s, 2H); ¹³C NMR (101 MHz, DMSO) δ 158.3, 158.2, 155.2, 150.1, 146.2, 144.2, 144.1, 144.0, 140.8, 140.6, 138.8, 136.2, 136.1, 134.8, 132.5, 131.7, 131.3, 131.2, 129.1, 128.8, 128.6, 128.4, 126.8, 126.5, 124.6, 122.2, 121.1, 113.8, 113.7, 57.5, 55.4; HRMS (ESI) m/z: [M+H]⁺ Calcd for C53H48N3O3S 806.3411; Found 806.3409.

Synthesis of ((6aR,7aS)-1-(3-(1-(3-((6aS,7aR)-7-(hydroxymethyl)-4-methyl-6,6a, 7,7a,8,9-hexahydro-5*H*-cyclopropa[5,6]cycloocta[1,2-d]pyridazin-1-yl)phenyl)-2,2-bis(4-methoxyphenyl)vinyl)phenyl)-4-methyl-6,6a,7,7a,8,9-hexahydro-5H-cyclopropa[5,6]cycloocta[1,2-d]pyridazin-7-yl)methanol (TPE-Pz12)

To a solution of **TPE-Tz12** (20 mg, 0.034 mmol) in CH₃CN (5 mL) was added **BCN** (20.7 mg, 0.14 mmol). The reaction mixture was stirred at room temperature for 30 min, then concentrated. The residue was purified by a preparative TLC plate (DCM/MeOH = 20:1) to afford the titled compound as white solid (25.4 mg, 89.4% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.32 (d, *J* = 14.4 Hz, 4H), 7.23 (d, *J* = 7.2 Hz, 2H), 7.10 (s, 2H), 7.06 – 6.98 (m, 4H), 6.74 – 6.66 (m, 4H), 3.78 (d, *J* = 1.7 Hz, 8H), 3.61 (t, *J* = 10.1 Hz, 2H), 2.94 (dd, *J* = 14.9, 7.5 Hz, 2H), 2.80 (d, *J* = 8.2 Hz, 2H), 2.74 (d, *J* = 2.6 Hz, 6H), 2.47 (d, *J* = 17.7 Hz, 3H), 2.33 (q, *J* = 11.8, 7.1 Hz, 6H), 1.29 (s, 4H), 1.15 – 1.01 (m, 2H), 0.88 – 0.86 (m, 2H), 0.68 – 0.48 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 160.7, 158.3, 158.2, 157.6, 144.0, 141.2, 141.2, 138.2, 138.2, 137.6, 137.6, 136.0, 135.9, 132.9, 132.0, 132.0, 131.4, 128.5, 128.4, 127.5, 127.4, 113.3, 59.1, 59.0, 55.2, 29.7, 27.7, 27.5, 20.5, 20.4; HRMS (ESI) m/z: [M+H]⁺ Calcd for C_{54H57N4O4} 825.4374; Found 825.4369.

Synthesis of ((6aR,7aS)-1-(4-(1-(4-((6aS,7aR)-7-(hydroxymethyl)-4-methyl-6,6a,7, 7a,8,9-hexahydro-5*H*-cyclopropa[5,6]cycloocta[1,2-d]pyridazin-1-yl)phenyl)-2,2bis(4-methoxyphenyl)vinyl)phenyl)-4-methyl-6,6a,7,7a,8,9-hexahydro-5Hcyclopropa[5,6]cycloocta[1,2-d]pyridazin-7-yl)methanol (TPE-Pz13)

To a solution of **TPE-Tz13** (20 mg, 0.034 mmol) in CH₃CN (5 mL) was added **BCN** (20.7 mg, 0.14 mmol). The reaction mixture was stirred at room temperature for 30 min, then concentrated. The residue was purified by a preparative TLC plate (DCM/MeOH = 20:1) to afford the titled compound as white solid (23.3 mg, 82.0% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.15 (d, *J* = 7.9 Hz, 4H), 7.11 (d, *J* = 7.9 Hz, 4H), 6.95 (d, *J* = 8.3 Hz, 4H), 6.60 (d, *J* = 8.3 Hz, 4H), 3.69 (s, 6H), 3.66 (d, *J* = 7.9 Hz, 4H), 3.00 – 2.90 (m, 2H), 2.84 – 2.75 (m, 4H), 2.69 (s, 8H), 2.33 (d, *J* = 7.0 Hz, 2H), 2.06 (s, 2H), 1.46 (s, 5H), 1.08 (s, 2H), 0.87 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.86, 158.35, 157.49, 144.26, 141.43, 140.79, 139.58, 138.23, 136.05, 135.78, 132.73, 131.38, 128.74, 113.16, 59.41, 55.18, 27.92, 27.23, 20.68; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₅₄H₅₇N₄O₄ 825.4374; Found 825.4362.

Synthesis of ((6aR,7aS)-1-((E)-4-(1-(4-((E)-2-((6aS,7aR)-7-(hydroxymethyl)-4-methyl-6,6a,7,7a,8,9-hexahydro-5H-cyclopropa[5,6]cycloocta[1,2-d]pyridazin-1-

yl)vinyl)phenyl)-2,2-bis(4-methoxyphenyl)vinyl)styryl)-4-methyl-6,6a,7,7a,8,9hexahydro-5H-cyclopropa[5,6]cycloocta[1,2-d]pyridazin-7-yl)methanol (TPE-Pz14)

To a solution of **TPE-Tz14** (20 mg, 0.032 mmol) in CH₃CN (5 mL) was added **BCN** (19.0 mg, 0.13 mmol). The reaction mixture was stirred at room temperature for 30 min, then concentrated. The residue was purified by a preparative TLC plate (DCM/MeOH = 20:1) to afford the titled compound as yellow solid (26.2 mg, 94.6% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 15.6 Hz, 2H), 7.33 (d, *J* = 8.1 Hz, 4H), 7.26 (d, *J* = 8.2 Hz, 2H), 7.03 (d, *J* = 8.2 Hz, 4H), 6.96 (d, *J* = 8.8 Hz, 4H), 6.65 (d, *J* = 8.7 Hz, 4H)., 3.74 (s, 6H), 3.71 (d, *J* = 7.9 Hz, 2H), 3.01 – 2.83 (m, 8H), 2.70 (s, 6H), 2.39 – 2.31 (m, 4H), 1.24 (s, 4H), 1.13 – 1.07 (m, 2H), 0.87 – 0.78 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 158.3, 156.9, 155.3, 144.8, 141.2, 140.2, 138.9, 138.2, 136.2, 135.7, 134.5, 132.7, 131.9, 126.9, 120.8, 113.2, 59.4, 55.2, 29.7, 27.1, 26.2, 20.8; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₅₈H₆₁N₄O₄ 877.4672; Found 877.4687.

To a solution of **TPE-Tz14** (10 mg, 0.016 mmol) in CH₃CN (2 mL) at 0°C was drop-added a solution of **BCN** (2.4 mg, 0.016 mmol) in CH₃CN. The reaction mixture was stirred at 0°C for 30 min, then concentrated. The residue was purified by a preparative TLC plate (DCM/MeOH = 20:1) to afford the titled compound as yellow solid (7.6 mg, 63.0% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, *J* = 16.5 Hz, 1H), 7.84 (d, *J* = 15.5 Hz, 1H), 7.42 (dd, *J* = 8.6, 2.0 Hz, 2H), 7.35 (dt, *J* = 12.5, 3.2 Hz, 3H), 7.28 (d, *J* = 2.1 Hz, 1H), 7.09 (dd, *J* = 8.3, 1.9 Hz, 2H), 7.03 (dd, *J* = 8.4, 2.0 Hz, 1H), 6.96 (dd, *J* = 8.8, 2.2 Hz, 4H), 6.65 (dd, *J* = 9.0, 2.2 Hz, 4H), 3.79 – 3.66 (m, 8H), 3.08 – 2.83 (m, 8H), 2.72 (d, *J* = 1.9 Hz, 3H), 2.35 (dd, *J* = 11.5, 5.2 Hz, 2H), 1.31 – 1.23 (m, 1H), 1.16 – 1.05 (m, 1H), 0.84 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 166. 2, 164.9, 158.5, 158.5, 155.3, 146.7, 144.6, 141.9, 140.8, 137.9, 136.0, 135.9, 134.6, 132.9, 132.7, 132.2, 131.9, 127.7, 127.0, 120.7, 119.9, 113.3, 113.233, 59.5, 55.2, 55.2, 27.2, 26.3, 21.2, 20.7. HRMS (ESI) m/z: [M+H]⁺ Calcd for C48H47N6O3 755.3665; Found 755.3681.

To a solution of **TPE-Tz15** (20 mg, 0.02 mmol) in CH₃CN (5 mL) was added **BCN** (6.2 mg, 0.8 mmol). The reaction mixture was stirred at room temperature for 30 min, then concentrated. The residue was purified by a preparative TLC plate (DCM/MeOH = 20:1) to afford the titled compound as orange solid (16.2 mg, 68.2% yield). ¹H NMR (600 MHz, DMSO) δ 8.70 (d, *J* = 4.8 Hz, 3H), 8.06 (d, *J* = 15.3 Hz, 1H), 7.53 – 7.22 (m, 12H), 7.13 (dd, *J* = 9.3, 3.6 Hz, 3H), 7.07 – 6.78 (m, 13H), 6.71 – 6.63 (m, 4H), 3.64 (d, *J* = 2.9 Hz, 6H), 3.46 (t, *J* = 7.7 Hz, 4H), 3.07 (s, 2H), 2.89 (d, *J* = 23.6 Hz, 2H), 2.65 (dt, *J* = 14.8, 7.1 Hz, 1H), 2.31 – 2.18 (m, 1H), 2.02 – 1.91 (m, 2H), 1.71 – 1.53 (m, 3H), 1.47 – 1.37 (m, 1H), 1.27 – 1.14 (m, 4H), 0.85 (dt, *J* = 44.2, 7.8 Hz, 6H).¹³C NMR (151 MHz, DMSO) δ 158.3, 155.1, 150.1, 146.2, 144.8, 143.9, 143.9, 143.5, 142.8, 140.8, 138.4, 136.1, 135.0, 134.8, 134.7, 132.6, 132.3, 131.8, 131.1, 130.1, 129.0, 128.7, 128.5, 128.4, 127.7, 127.6, 127.5, 127.1, 126.7, 126.5, 126.3, 125.7, 124.6, 122.2, 121.5, 121.0, 113.7, 110.7, 88.1, 57.4, 55.4, 40.2, 29.5, 29.1, 29.0, 28.0, 27.0, 22.5; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₇₈H₇₁N₆O₄S₂ 1219.4890; Found 1219.4902.

Reaction kinetics measurement

To a solution of 0.1 mM TPE probe in PBS buffer (pH=7.4) was added 10-fold excess of BCN reagent (1 mM) at 37 °C. The fluorescence intensity of the mixture solution at different time interval was recorded at λ_{em} of each probe using TECAN fluorescence plate reader (λ_{exc} =365 nm). The reaction kinetics was hypothesized as pseudo-first order reaction, and the observed rate constants (k_{obs}) were calculated using the one phase exponential association equation. The second order rate constants (k_2) were calculated using the equation: $k_2 = k_{obs}/[BCN reagent]$.

X-ray single crystal diffraction

Suitable crystals of TPE-Pz10 were obtained by slowly evaporating a mixture of

chloroform and methanol solution (1:1, v/v) at ambient temperature. A colorless crystal was mounted on a glass fiber at a random orientation. The data were collected at 100 K by a diffractometer Rigaku Oxford Diffraction Supernova Dual Source, Cu at Zero equipped with an AtlasS2 CCD using Cu K α radiation (1.54178 Å), and processed using CrysAlisPro. The structures were solved by direct methods using Olex2 software, and the nonhydrogen atoms were located from the trial structure and then refined anisotropically with SHELXL-2018 using a full-matrix least squares procedure based on F². The weighted *R* factor, *wR* and goodness-of-fit *S* values were obtained based on F². The hydrogen atom positions were fixed geometrically at the calculated distances and allowed to ride on the parent atoms. Crystallographic data for the structure reported in this paper have been deposited at the Cambridge Crystallographic Data Center and allocated with the deposition numbers: CCDC 2191457.

Reference

1. Teng, Y.; Yang, H.; Li, X.; Wang, Y. C.; Yin, D. L.; Tian, Y. L., A Bioorthogonal-Activated Fluorescence Turn-On Probe Based on Nitrone-Modified 1,8-Naphthalimide for Live-Cell Imaging. *Chin. J. Chem.* **2022**, 40, 209-214.

2. Mao, W.; Shi, W.; Li, J.; Su, D.; Wang, X.; Zhang, L.; Pan, L.; Wu, X.; Wu, H., Organocatalytic and Scalable Syntheses of Unsymmetrical 1,2,4,5-Tetrazines by Thiol-Containing Promotors. *Angew. Chem. Int. Ed.* **2019**, 58, 1106-1109.

¹³C NMR of compound **TPE-Tz1** (101 MHz in CDCl₃)

¹H NMR of compound **TPE-Tz2** (500 MHz in CDCl₃)

¹³C NMR of compound **TPE-Tz2** (101 MHz in CDCl₃)

¹H NMR of compound **TPE-Tz3** (400 MHz in CDCl₃)

$^1\mathrm{H}$ NMR of compound TPE-Tz4 (500 MHz in CDCl_3)

S45

¹H NMR of compound **TPE-Tz5** (500 MHz in CDCl₃)

$^1\mathrm{H}$ NMR of compound TPE-Tz6 (500 MHz in CDCl_3)

¹H NMR of compound TPE-Tz7 (400 MHz in CDCl₃)

¹H NMR of compound TPE-Tz8 (400 MHz in CDCl₃)

¹³C NMR of compound **TPE-Tz8** (101 MHz in CDCl₃)

¹H NMR of compound **TPE-Tz9** (400 MHz in CDCl₃)

¹³C NMR of compound **TPE-Tz9** (101 MHz in CDCl₃)

¹H NMR of compound **TPE-Tz10** (400 MHz in CDCl₃)

¹³C NMR of compound **TPE-Tz10** (101 MHz in CDCl₃)

¹H NMR of compound **TPE-Tz11** (500 MHz in Acetone- d_6)

¹³C NMR of compound **TPE-Tz11** (101 MHz in Acetone- d_6)

¹H NMR of compound **TPE-Tz12** (400 MHz in CDCl₃)

¹³C NMR of compound TPE-Tz12 (101 MHz in CDCl₃)

¹H NMR of compound **TPE-Tz13** (400 MHz in CDCl₃)

¹³C NMR of compound **TPE-Tz13** (101 MHz in CDCl₃)

¹H NMR of compound **TPE-Tz14** (400 MHz in CDCl₃)

S55

¹³C NMR of compound **TPE-Tz15** (151 MHz in Acetone- d_6)

¹H NMR of compound **TPE-Pz1** (400 MHz in CDCl₃)

¹H NMR of compound **TPE-Pz2** (500 MHz in CDCl₃)

¹³C NMR of compound **TPE-Pz3** (101 MHz in CDCl₃)

¹H NMR of compound **TPE-Pz4** (400 MHz in CDCl₃)

¹³C NMR of compound **TPE-Pz4** (101 MHz in CDCl₃)

¹H NMR of compound **TPE-Pz5** (500 MHz in CDCl₃)

¹³C NMR of compound **TPE-Pz5** (101 MHz in CDCl₃)

¹H NMR of compound **TPE-Pz6** (500 MHz in CDCl₃)

¹³C NMR of compound **TPE-Pz6** (101 MHz in CDCl₃)

¹H NMR of compound **TPE-Pz7** (500 MHz in CDCl₃)

¹³C NMR of compound **TPE-Pz7** (101 MHz in CDCl₃)

¹H NMR of compound **TPE-Pz8** (400 MHz in CDCl₃)

¹³C NMR of compound **TPE-Pz8** (101 MHz in CDCl₃)

¹H NMR of compound **TPE-Pz9** (400 MHz in CDCl₃)

¹³C NMR of compound **TPE-Pz9** (101 MHz in CDCl₃)

¹H NMR of compound **TPE-Pz10** (400 MHz in CDCl₃)

¹³C NMR of compound **TPE-Pz11** (101 MHz in Acetone- d_6)

¹H NMR of compound **TPE-Pz12** (500 MHz in CDCl₃)

¹H NMR of compound **TPE-Pz13** (500 MHz in CDCl₃)

¹³C NMR of compound TPE-Pz14m (101 MHz in CDCl₃)

¹H NMR of compound **TPE-Pz15** (600 MHz in Acetone- d_6)

¹³C NMR of compound **TPE-Pz15** (151 MHz in Acetone- d_6)

