Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Functionalization of polymeric nanoparticles with targeting VNAR ligands

using vinyl sulfone conjugation

Adam Leach, Marie Finnegan, Mariana S. Machado, Laura Ferguson, John Steven, Peter Smyth, Andrew Porter, Caroline Barelle, Efrosyni Themistou and Christopher J. Scott

Scheme S1. Preparation of vinyl sulfone-functionalized amphiphilic PLA₁₉-*b*-P(OEGMA₁₄-*stat*-VSTEMA₂) diblock copolymers. (a) Synthesis of disulfide-functionalized branched amphiphilic PLA₁₉-*b*-P(OEGMA₁₄-*stat*-DSDMA₁) diblock copolymer from a dual ROP-RAFT agent by simultaneous ROP of LA and RAFT statistical copolymerization of OEGMA and DSDMA. *Polymerization conditions*: [LA]₀ : [DEGMA]₀ : [DSDMA]₀ : [ROP-RAFT agent]₀ relative molar ratios 20 : 15 : 1 : 1 and 55% w/w solids at 74 °C for 24 h. Indicative intramolecular cycle presented for the disulfide bond although both intramolecular cycles and intermolecular branches are expected to be obtained by this reaction. (b) Formation of a thiol-functionalized linear amphiphilic PLA₁₉-*b*-P(OEGMA₁₄-*stat*-TEMA₂) diblock copolymer with thiol groups prepared by reductive cleavage of the disulfide bonds in the methacrylic block of the disulfide-functionalized amphiphilic diblock copolymer. *Reaction conditions*: Bu₃P in DMF at 30 °C for 2 h with relative molar ratios of [Bu₃P]₀ : [Et₃N]₀ : [disulfide bond]₀ of 3.0 : 2.1 : 1. (c) Synthesis of vinyl sulfone-functionalized linear amphiphilic PLA₁₉-*b*-P(OEGMA₁₄-*stat*-VSTEMA₂) diblock copolymer by conjugation of divinyl sulfone to the thiol-functionalized amphiphilic diblock copolymer. *Reaction conditions*: Bu₃P in DMF, 30 °C, 15 h, excess DVS with relative molar ratio [DVS]₀ : [thiol]₀ of 15 : 1.

Figure S1. ¹H NMR (CDCl₃) spectra of (a) disulfide-functionalized branched amphiphilic PLA₁₉-*b*-P(OEGMA₁₄-*stat*-DSDMA₁) and (b) vinyl-sulfone functionalized linear amphiphilic PLA₁₉-*b*-P(OEGMA₁₄-*stat*-VSTEMA₂) diblock copolymers.

Figure S2. SEC (THF) chromatograms of disulfide-functionalized branched amphiphilic PLA₁₉-*b*-P(OEGMA₁₄-*stat*-DSDMA₁), thiol-functionalized linear amphiphilic PLA₁₉-*b*-P(OEGMA₁₄-*stat*-TEMA₂) and vinyl-sulfone functionalized linear amphiphilic PLA₁₉-*b*-P(OEGMA₁₄-*stat*-VSTEMA₂) diblock copolymers.

Figure S3. Assessment of VNAR-functionalized (VS VNAR) and vinyl-sulfone functionalized (VS nude) nanoparticle formulations stored in PBS buffer suspension at 4°C between 0 and 72 h at predetermined intervals: (A) Hydrodynamic diameter by DLS, (B) polydispersity index value by DLS and (C) binding by fluorescent plate based binding assay, data presented as fold difference fluorescence between DLL4-Fc coated and uncoated wells at 24 and 72 h post VNAR conjugation.