Solid-state emitting twisted π -conjugates as AIE-active DSE-gens: In vitro anticancer properties against FaDu and 4T1 with biocompatibility and bioimaging

Shouvik Bhuin,^a Pravesh Sharma,^b Purbali Chakraborty,^b Onkar Kulkarni,^b Manab Chakravarty^a*

^{a.} Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus Jawahar Nagar, Shamirpet, Hyderabad, Telangana, 500078, India. E-mail: manab@hyderabad.bits-pilani.ac.in

b. Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus Jawahar Nagar, Shamirpet, Hyderabad, Telangana, 500078, India.

Topics	Page no.
Fig. S1 Solid-state (a) absorbance and (b) emission of indole-anthracenyl derivatives	2
Table S1 Solid state fluorescence properties of the synthesized indole-linked anthracenyl π -conjugates	2
Fig. S2 (a) Absorbance in MeCN and (b) absorbance in DMSO of indole-anthracenyl derivatives	3
(corresponding $\lambda_{\text{max.abs.}}$ have been mentioned)	
Table S2 Steady-state photophysical parameters of DSEgens	3
Fig. S3 TD-DFT optimized structures of SB2 in MeCN and DMSO with capped sticks presentations from 'b' axis.	4
Fig. S4 Space fill presentations from the 'b' axis view of the TD-DFT optimized structures with the probable RMSD orientation	4
Fig. S5 HOMO-LUMO distribution of SB2 and SB4 in MeCN and DMSO	5-6
Table S3 TD-DFT calculation results for SB2 and SB4 in MecN and DMSO	7
Fig. S6 SB1 non-AIE-property in MeCN/Water medium (a) absorbance (b) emission (c) visualization under 365nm LIV-lamp	7
Fig. S7 SB2 non-AIE-property in MeCN/Water medium (a) absorbance (b) emission (c) visualization under 365nm UV-lamp	8
Fig. S8 SB3 non-AIE-property of MeCN/Water medium (a) absorbance (b) emission (c) visualization under 365nm UV-lamp	8
Fig. S9 (a) SB4 absorbance in MeCN/water medium in different water fractions (b) SB4 absorbance in MeOH/glycerol medium in different glycerol fraction	9
Fig. S10 AIE-properties of SB5 (a,d,g), SB6 (b,e,h) and SB7(c,f,i) in MeCN/water medium	9
Fig. S11 SEM images of the AIE-gens at their respective water fraction for aggregation	9
Fig. S12 Decay profile of SB4 in MeCN, DMSO, aggregates and solids	10
Table S4: Time-resolved fluorescence parameters for SB4 as an SSOF-gen, DSE-gen, and AIEE-gen	10
Fig. S13 Aggregation-induced enhanced emission property of SB1 (a-b), SB2 (c-d), SB4 (e-f), SB6 (g-h) and SB7 (i-i) in DMSO/Water medium	11
Fig. S14 Confocal images utilized for quantification	12-15
Fig. S15 2D view of interactions of reported ligands and SB4	16-18
Fig. S16 ¹ H NMR spectra of diethyl ((10-(1-hexyl-1H-indol-3-yl)anthracen-9-yl)methyl)phosphonate	18
Fig. S17 : ¹³ C NMR spectra of diethyl ((10-(1-hexyl-1H-indol-3-yl)anthracen-9-yl)methyl)phosphonate	19
Fig. S18 ³¹ P NMR spectra of diethyl ((10-(1-hexyl-1H-indol-3-yl)anthracen-9-yl)methyl)phosphonate	19
Fig. S19 ¹ H NMR spectra of 2-(pyridin-3-yl)benzaldehyde	20
Fig. S20 ¹³ C NMR spectra of 2-(pyridin-3-yl)benzaldehyde	20
Fig. S21 ¹ H NMR spectra of 5-(2-formylphenyl)picolinonitrile	21
Fig. S22 ¹³ C NMR spectra of 5-(2-formylphenyl)picolinonitrile	21
Fig. S23 ¹ H NMR spectra of (E)-1-hexyl-3-(10-(2-(pyridin-3-yl)styryl)anthracen-9-yl)-1H-indole	22
Fig. S24 ¹³ C NMR spectra of (E)-1-hexyl-3-(10-(2-(pyridin-3-yl)styryl)anthracen-9-yl)-1H-indole	22
Fig.S25 ¹ H NMR spectra of (E)-5-(2-(10-(1-hexyl-1H-indol-3-yl)anthracen-9-	23
y)viny)preny)preny)preofinonitrife Fig. S26 ¹³ C NMR spectra of (E)-5-(2-(2-(10-(1-hexyl-1H-indol-3-yl)anthracen-9- yl)vinyl)phenyl)picolinonitrile	23
Fig. S27 ¹ H NMR spectra of (E)-1-hexyl-3-(10-(4-(pyridin-2-yl)styryl)anthracen-9-yl)-1H-indole	24
Fig. S28 ¹³ C NMR spectra of (E)-1-hexyl-3-(10-(4-(pyridin-2-yl)styryl)anthracen-9-yl)-1H-indole	24

Fig. S29 ¹ H NMR spectra of (E)-1-hexyl-3-(10-(2,3,4-trimethoxystyryl)anthracen-9-yl)-1H-indole	
Fig. S30 ¹³ C NMR spectra of (E)-1-hexyl-3-(10-(2,3,4-trimethoxystyryl)anthracen-9-yl)-1H-indole	25
Fig. S31 ¹ H NMR spectra of (E)-1-hexyl-3-(10-(3,4,5-trimethoxystyryl)anthracen-9-yl)-1H-indole	26
Fig. S32 ¹³ C NMR spectra of (E)-1-hexyl-3-(10-(3,4,5-trimethoxystyryl)anthracen-9-yl)-1H-indole	26
Fig. S33 ¹ H NMR spectra of (E)-4-(2-(10-(1-hexyl-1H-indol-3-yl)anthracen-9-yl)vinyl)-N,N- diphenylaniline	27
Fig. S34 ¹³ C NMR spectra of (E)-4-(2-(10-(1-hexyl-1H-indol-3-yl)anthracen-9-yl)vinyl)-N,N- diphenylaniline	27
Fig. S35 ¹ H NMR spectra of (E)-3-(2-(10-(1-hexyl-1H-indol-3-yl)anthracen-9-yl)vinyl)-10-pentyl-10H- phenothiazine	28
Fig. S36 ¹³ C NMR spectra of of (E)-3-(2-(10-(1-hexyl-1H-indol-3-yl)anthracen-9-yl)vinyl)-10-pentyl- 10H-phenothiazine	28
Fig. S37 HR-MS spectra of the synthesized compounds	29-31
References	31

Fig. S1 Solid-state (a) absorbance and (b) emission of indole-anthracenyl derivatives

Table S1 Solid state fluorescence properties of the synthesized indole-linked anthracenyl π -conjugates

Compound	λ _{abs max} (nm)	λ _{em max} (nm)	φ _{f solid} (%)
SB1	426	510	7.04
SB2	458	505	1.29
SB3	460	517	26.64
SB4	463	534	10.28
SB5	465	501	7.00
SB6	463	517	20.11
SB7	510	589	2.66

The solid-state absolute quantum yield values were obtained with absolute errors within $\sim \pm 2\%$

Fig. S2 (a) Absorbance in MeCN and (b) absorbance in DMSO of indole-anthracenyl derivatives (corresponding $\lambda_{max.abs.}$ have been mentioned)

Compound	Solvent	λ _{max.abs} (nm)	λ _{.em} (nm)	Stokes shift (nm) with respect to	φ _f (%)
CD1	Machi	401	427 (max) 450	the $\lambda_{\text{em max}}$	1.02
581	Mech	401	427 (max), 450	26	1.63
SB2	MeCN	401	483	82	2.13
SB3	MeCN	407	493	86	2.54
SB4	MeCN	407	427, 508 (max)	101	2.53
SB5	MeCN	406	428, 507 (max)	101	3.19
SB6	MeCN	412	548	136	3.91
SB7	MeCN	414	457, 619 (max)	205	1.91
SB1	DMSO	411	436, 512 (max)	101	1.21
SB2	DMSO	411	503	92	1.53
SB3	DMSO	413	510	97	2.76
SB4	DMSO	413	441, 520 (max)	107	2.18
SB5	DMSO	412	517	105	2.10
SB6	DMSO	416	555	139	4.18
SB7	DMSO	411	531, 623 (max)	92	1.49

Table S2 Steady-state photophysical parameters of DSEgens

Some of these molecules have other shoulder peaks of emissions in a different region from the maxima. **SB3** in DMSO has a very broad spectrum covering from 427 nm to 720 nm almost with a max (maximum) at 510 nm without any shoulder emission.

Fig. S3 TD-DFT optimized structures of SB2 in MeCN and DMSO with selected torsion angles

Fig. S4 Space fill presentations from the 'b' axis view of the TD-DFT optimized structures with the probable RMSD orientation

SB2

SB4

MeCN-Solvent

HOMO = -6.238 eVLUMO = -0.612 eV $\Delta E = 5.626 \text{ eV}$

Fig. S5 HOMO-LUMO distribution of SB2 and SB4 in MeCN and DMSO

Compound	Solvent	Absorbance	Emission	θ1(•) •	θ₂(.) .	θ ₁ (•) •	$\theta_2(\bullet)$	RMSD (Å)	ΔE_{HOMO-}
		Oscillator	oscillator						LUMO
		strength	strength						(eV)
		(f')	(<i>f</i>)						
SB2	MeCN	0.6546	1.1298	107.76	144.23	131.50	156.20	1.4163	5.453
SB2	DMSO	0.6726	1.1308	107.76	144.23	131.53	156.21	1.4176	5.454
SB4	MeCN	0.6522	1.2260	102.09	162.77	130.38	171.32	1.5178	5.626
SB4	DMSO	0.6691	1.2268	102.10	162.78	130.40	171.37	1.5194	5.625

Computational details: All density functional theoretical (DFT) calculations were performed using the ORCA Version 5.0.3 quantum chemical software package.^{1,2} Ground state (S_0) geometry optimizations were done using DFT with CAM-B3LYP³ functional and 6-31G* basis set. The excited stats (S_1) geometry optimization was done using time-dependent DFT (TDDFT). Root mean square deviation (RMSD) calculations were done using the Kabsch algorithm.⁴ All structural and MOs were visualized using Avogadro software.⁵

SB4

Fig. S6 non-AIE-property of SB1 in MeCN/Water medium (a) absorbance (b) emission (c) visualization under 365nm UV-lamp

Fig. S7 Non-AIE-property of SB2 in MeCN/Water medium (a) absorbance (b) emission (c) visualization under 365nm UVlamp

Fig. S8 AIE(E)-property of SB3 in MeCN/Water medium (a) absorbance (b) emission (c) visualization under 365nm UV-lamp

Fig. S9 (a) SB4 absorbance in MeCN/water medium in different water fractions (b) SB4 absorbance in MeOH/glycerol medium in different glycerol fraction

Fig. S10 AIE-properties of SB5 (a,d,g), SB6 (b,e,h) and SB7(c,f,i) in MeCN/water medium

Fig. S11 SEM images of the AIE-gens at their respective water fraction for aggregation

Fig. S12 Decay profile of SB4 in MeCN, DMSO, aggregates and solids

Table S4: Time-resolved fluorescence parameters for SB4 as an SSOF-gen, DSE-gen, and AIEE-gen

Form	χ2	τ1	τ2	τ3	α1	α2	α3	τ _{avg.} (ns))	k _r (x 10 ⁹ s ⁻	k _{nr} (x 10 ⁹ s ⁻	k _r /k _{nr}
								(- <i>1</i> /	1)	1)	
In MeCN	1.0351	0.0277	0.3848	-	0.9995	0.0005	-	0.0279	0.907	34.9	0.026
Aggregate in	0.9909	0.0614	0.4265		0.9866	0.0134	-	0.0663	61.4	14.5	4.234
MeCN/Water											
medium											
In DMSO	1.0282	0.0907	0.0432	0.6831	0.0555	0.9436	0.0009	0.0464	0.47	21.1	0.022
Aggregate in	1.0206	0.0787	0.0466	-	0.1052	0.8948	-	0.0500	66.2	19.3	3.43
DMSO/Water											
medium											
Solid-state	0.9915	0.7666	3.004	0.0509	0.0176	0.0004	0.9779	0.0766	1.34	11.7	0.11

The average lifetime was obtained by fitting the decay profiles to a tri/bi-exponential function eqn-1.

 $\mathsf{Fit} = A_1 . exp \ (-t/\ \tau_1) + A_2 . exp \ (-t/\ \tau_2) + A_3 . exp \ (-t/\ \tau_3) \ \dots \ (\mathsf{eq-1})$

 α_1 , α_2 are weighted components and τ_1 , τ_2 , τ_3 are individual lifetime components of the decay. The qualities of the fit were determined by judging the chi square (χ^2) values.

The rate constants are calculated using: $k_r = \left[\Phi_f / \tau_{avg} \right] s^{-1}$; $k_{nr} = \left[1 - \Phi_f / \tau_{avg} \right] s^{-1}$

Fig. S13 Aggregation-induced enhanced emission property of **SB1** (a-b), **SB2** (c-d), **SB4** (e-f), **SB6** (g-h), and **SB7** (i-j) in DMSO/Water medium. The pictures had been taken by keeping the containers under a 365nm UV lamp. The excitation wavelengths were between 408 nm to 424 nm for them.

x = 231.93 μm y = 78.53 μm

18.1 µm

<u>23.1 µm</u>

x = 231.93 μm y = 78.53 μm <u>18.1 μm</u>

<u>23.1 µm</u>

x = 231.93 μm y = 78.53 μm

FaDu 24h DAPI vs SB4

18.1 µm

<u>23.1 µm</u>

x = 231.93 μm y = 78.53 μm

<u>18.1 µm</u>

<u>23.1 µm</u>

4T1 4h DAPI vs SB4

Fig. S14 Confocal images utilized for quantification. The blue color is displayed by DAPI, red by doxorubicin, and green by SB4, and the mixed color appears by colocalization

- Charged (negative) Charged (positive) Glycine Hydrophobic Metal
- Polar Unspecified residue Water Hydration site Hydration site (displ Distance H-bond Halogen Metal co Pi-Pi sta ++ 1 1

(h) 5X2C with SB4

Fig. S15 2D view of interactions of reported ligands and SB4

Fig. S16 ¹H NMR spectra of diethyl ((10-(1-hexyl-1H-indol-3-yl)anthracen-9-yl)methyl)phosphonate

Fig. S17 ¹³C NMR spectra of diethyl ((10-(1-hexyl-1H-indol-3-yl)anthracen-9-yl)methyl)phosphonate

Fig. S18 ³¹P NMR spectra of diethyl ((10-(1-hexyl-1H-indol-3-yl)anthracen-9-yl)methyl)phosphonate

Fig. S20 ¹³C NMR spectra of 2-(pyridin-3-yl)benzaldehyde

Fig. S21 ¹H NMR spectra of 5-(2-formylphenyl)picolinonitrile

Fig. S22 ¹³C NMR spectra of 5-(2-formylphenyl)picolinonitrile

Fig. S24 ¹³C NMR spectra of (E)-1-hexyl-3-(10-(2-(pyridin-3-yl)styryl)anthracen-9-yl)-1H-indole

Fig. S26 ¹³C NMR spectra of (E)-5-(2-(2-(10-(1-hexyl-1H-indol-3-yl)anthracen-9-yl)vinyl)phenyl)picolinonitrile

Fig. S27 ¹H NMR spectra of (E)-1-hexyl-3-(10-(4-(pyridin-2-yl)styryl)anthracen-9-yl)-1H-indole

Fig. S28 ¹³C NMR spectra of (E)-1-hexyl-3-(10-(4-(pyridin-2-yl)styryl)anthracen-9-yl)-1H-indole

Fig. S29 ¹H NMR spectra of (E)-1-hexyl-3-(10-(2,3,4-trimethoxystyryl)anthracen-9-yl)-1H-indole

Fig. S30 ¹³C NMR spectra of (E)-1-hexyl-3-(10-(2,3,4-trimethoxystyryl)anthracen-9-yl)-1H-indole

Fig. S31 ¹H NMR spectra of (E)-1-hexyl-3-(10-(3,4,5-trimethoxystyryl)anthracen-9-yl)-1H-indole

Fig. S32 ¹³C NMR spectra of (E)-1-hexyl-3-(10-(3,4,5-trimethoxystyryl)anthracen-9-yl)-1H-indole

Fig. S33 ¹H NMR spectra of (E)-4-(2-(10-(1-hexyl-1H-indol-3-yl)anthracen-9-yl)vinyl)-N,N-diphenylaniline

Fig. S34 ¹³C NMR spectra of (E)-4-(2-(10-(1-hexyl-1H-indol-3-yl)anthracen-9-yl)vinyl)-N,N-diphenylaniline

Fig. S35 ¹H NMR spectra of (E)-3-(2-(10-(1-hexyl-1H-indol-3-yl)anthracen-9-yl)vinyl)-10-pentyl-10H-phenothiazine

Fig. S36 ¹³C NMR spectra of of (E)-3-(2-(10-(1-hexyl-1H-indol-3-yl)anthracen-9-yl)vinyl)-10-pentyl-10H-phenothiazine

Fig. S37 HR-MS spectra of the synthesized compounds

References:

1. Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. "The ORCA Quantum Chemistry Program Package." *Journal of Chemical Physics*, 2020, **152**, 224108.

2. Neese, F. "Software Update: The ORCA Program System-Version 5.0." *WIREs Computational Molecular* Science, 2022, **2**, 73-78.

3. T. Yanai, D. Tew, and N. Handy, "A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP),"*Chem. Phys. Lett.*, 2004, **393**, 51-57.

4. Kabsch W., A solution for the best rotation to relate two sets of vectors, *Acta Crystallogr.*, 1976, **A32**, 922-923. (Code: <u>https://github.com/charnley/rmsd</u>)

5. Hanwell, Marcus D., et al. "Avogadro: an advanced semantic chemical editor, visualization, and analysis platform." *J. Cheminformatics*, 2012, **4**, 1-17.