Electronic Supporting Information

Chitosan/Snail slime films as multifunctional platforms for potential biomedical and cosmetic applications: physical, and chemical characterization

Jennifer Gubitosa^a, Vito Rizzi^{a*}, Paola Fini^b, Fiorenza Fanelli^c, Teresa Sibillano^d, Nicola Corriero^d, Pinalysa Cosma^{a*}

^aUniversità degli Studi "Aldo Moro" di Bari, Dipartimento di Chimica, Via Orabona, 4- 70126 Bari, Italy;
^bConsiglio Nazionale delle Ricerche CNR-IPCF, UOS Bari, Via Orabona, 4- 70126 Bari, Italy;
^cConsiglio Nazionale delle Ricerche, Istituto di Nanotecnologia (CNR-NANOTEC) c/o Dipartimento di Chimica, Università degli Studi "Aldo Moro", Via Orabona, 4 - 70126 Bari, Italy;
^dConsiglio Nazionale delle Ricerche CNR-IC, UOS Bari, Via Amendola,122/O 70126 Bari, Italy;

*Corresponding Authors: Prof. Pinalysa Cosma:

Università degli studi di Bari "Aldo Moro"

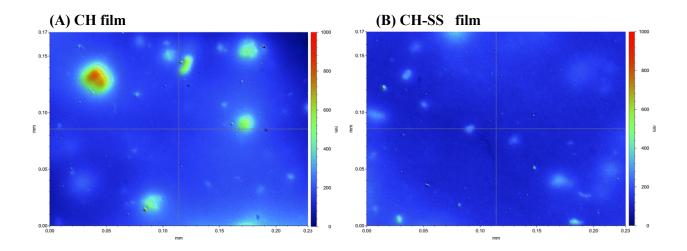
Dipartimento di Chimica, Via Orabona 4-70126 Bari, Italy

Tel: +390805443443

E-mail pinalysa.cosma@uniba.it

*Dr. Vito Rizzi:

Università degli studi di Bari "Aldo Moro"


Dipartimento di Chimica, Via Orabona 4-70126 Bari, Italy

Tel: +390805443443

E-mail vito.rizzi@uniba.it

1. Profilometer analyses.

White light vertical scanning interferometry (WLVSI) was used to determine the topography of the chitosan-based films and estimate their route mean square (RMS) surface roughness. Analyses were carried out using a Bruker Contour GT-K0X 3D optical microscope equipped with a 50x Mirau-type interferometric objective and a 0.55x camera zoom ($0.23 \times 0.17 \text{ mm}^2$ field of view). The RMS roughness values are the mean of 30 measurements carried out over $0.17 \times 0.23 \text{ mm}^2$ surface areas.

Figure S1. 2D white light vertical scanning interferometry (WLVSI) images of the CH (**A**) and CH-SS (**B**) films, containing 0% and 8% (v/v) of SS, respectively.

2. X-ray diffraction (XRD) analyses.

X-ray diffraction (XRD) data were collected at room temperature from a sample of Chitosan/Snail slime films by using a Bruker D8 Discover diffractometer (operating conditions 40 kV, 40 mA) equipped with a Goebel mirror for copper radiation ($\lambda_{K\alpha 1} = 1.54056$ Å, $\lambda_{K\alpha 2} = 1.54439$ Å), and a scintillator detector. Data were collected in a reflection geometry at a fixed incidence angle of $\omega = 1^{\circ}$ while moving the detector between 10° and 70° with a step size of 0.05°.

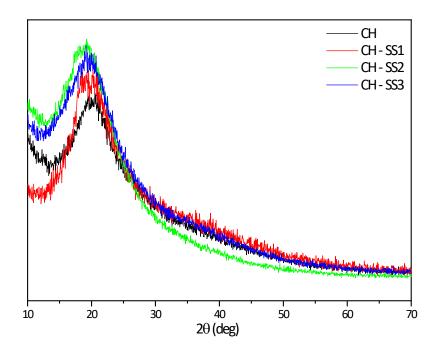
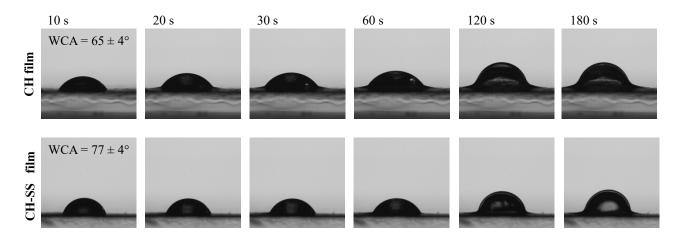



Figure S2: XRD diffraction patterns of CH, CH-SS1, CH-SS2, and CH-SS3 films, containing 0%, 4%, 8%, and 12 % (v/v) of SS, respectively.

3. Water Contact Angle (WCA) analyses.

Experimentally, in the present study, the wettability of the chitosan-based films was evaluated using a KSV CAM 200 optical contact angle meter by depositing on the samples 2 μ L distilled water droplets.

Figure S3. Time-lapse images acquired over time with an optical contact angle meter after depositing a 2 µL distilled water droplet on the CH and CH-SS films, containing 0% and 8% of SS, respectively.

	2θ amorphous peak position	FWHM
	(deg)	(Gaussian fit of the peak)
СН	20.3	6.1
CH - SS1	20.3	4.3
CH - SS2	19.55	6.5
CH - SS3	19.80	8.7

Table S1: The FWHM of the diffraction patterns by the Gaussian fit of the amorphous peaks,reported in Figure S2.