Supporting information

Multifunctional Tunable ZnFe₂O₄@MnFe₂O₄ Nanoparticles for Dual-Mode MRI and Combined Magnetic Hyperthermia with Radiotherapy Treatment

Ilia D. Shabalkin,^a Alexey S. Komlev,^b Sergey A. Tsymbal,^a Oleg I. Burmistrov,^c Vladimir I. Zverev,^b and Pavel V. Krivoshapkin^{*a}

^aSCAMT Institute, ITMO University, 9 Lomonosova Street, Saint Petersburg, 191002, Russian Federation ^bFaculty of Physics, Moscow State University, 1 Kolmogorova Street, Moscow, 119991, Russia Federation ^cSchool of Physics and Engineering, ITMO University, 9 Lomonosova Street, Saint Petersburg,

191002, Russian Federation

* Corresponding author. E-mail address: krivoshapkin@scamt-itmo.ru

Sample №	Core	Precipitator	Fe ³⁺ Source	Mn ²⁺ Source	Temperature	Time	Crystallite size	Impurity
					(°C)	(h)	D (nm)	
1		NaOH	FeCl ₃ ·6H ₂ O				12.1	Fe ₂ O ₃
2	ZnFe ₂ O ₄	NaOH	Fe(NO ₃) ₃ ·9H ₂ O	MnCl ₂ ·4H ₂ O	175	3	10.0	Fe ₂ O ₃
3		NH4OH	FeCl ₃ ·6H ₂ O	-			9.5	none
4		NH4OH	Fe(NO ₃) ₃ ·9H ₂ O	-			9.1	none

 Table S1 – Dependence of purity and average crystallites size on initial precursors for ZM3 synthesis.

Figure S1 – XRD patterns and average crystallite size of ZM_3 obtained from different precursors.

Figure S2 – TEM images and size distribution of (A) ZnFe₂O₄, (B) ZM0.5, and (C) ZM3.

Figure S3 – MNP hydrodynamic diameters. (A) $ZnFe_2O_4$, (B) ZM0.5 coated with sodium citrate, and (C) ZM3 coated with sodium citrate in aqueous solution.

Figure S4 – Zeta potential change of ZM0.5 and ZM3 before and after sodium citrate coating.

Figure S5 – Magnetization dependence on field strength of ZM0.5 and ZM3 at 42 °C.

Figure S6 – Magnetization dependence on field strength of ZM0.5 and ZM3 at 90 K.

Figure S7 – Approximated Akulov's law magnetization curve for ZM3 sample at 90 K.