Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Fabricating biodegradable calcium phosphate/calcium sulfate cement reinforced with cellulose: in vitro and in vivo studies

Xiao-Dan Li^a, Da-Wei Yan^a, Hao-Hao Ren^a, Qi-Yi Zhang^{b*}, and Yong-Gang Yan^{a*}

^aCollege of Physics, Sichuan University, Chengdu, Sichuan, 610064, China

^bSchool of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China

*Correspondence: Yong-Gang Yan and Qi-Yi Zhang

Email: yanyonggang@scu.edu.cn (Yong-Gang Yan) and qyzhang-scu@163.com (Qi-Yi Zhang)

Fig. S1. The dimension of CMC/OPC composite bone cement

Fig. S2. XPS of composite bone cement for 5-50%CMC/OPC.

Fig. S3. Flow cytometry data analysis.

Fig. S4. Representative immunostainings of F4/80⁺, ARG⁺, and iNOS⁺ macrophages.

Fig. S5. Uncropped western blot images corresponding to Fig. 4I.

Genes	ID	ID Direction Sequer			
CADDII	14422	FORWARD	GGTTGTCTCCTGCGACTTCA		
GALDU	14455	REVERSE	TGGTCCAGGGTTTCTTACTCC		
	12042	FORWARD	TAAGGGTCCCCAATGGTGAGA		
COLI	12842	REVERSE	GGGTCCCTCGACTCCTACAT		
Duny)	12202	FORWARD	CCTTCAAGGTTGTAGCCCTC		
Runx2	12393	REVERSE	GGAGTAGTTCTCATCATTCCCG		
OPN	20750	FORWARD	AAACACACAGACTTGAGCATTC		
UFN	20750	REVERSE	TTAGGGTCTAGGACTAGCTTGT		
β-Actin	11/61	FORWARD	GTGCTATGTTGCTCTAGACTTCG		
	11401	REVERSE	ATGCCACAGGATTCCATACC		
INOS	18126	FORWARD	ACTCAGCCAAGCCCTCACCTAC		
INUS		REVERSE	TCCAATCTCTGCCTATCCGTCTCG		
ADC	11976	FORWARD	CATATCTGCCAAAGACATCGTG		
ANG	11040	REVERSE	GACATCAAAGCTCAGGTGAATC		

Table S1. Primer sequences for RT-PCR

	5%CMC/OPC	10%CMC/OPC	20%CMC/OPC	30%CMC/OPC	40%CMC/OPC	50%CMC/OPC
Elements	$CaSO_4$	CaHPO ₄	CaSO ₄	CaHPO ₄	Ca(OH) ₂	CMC
С	17.96	15.00	20.64	21.68	19.93	46.90
0	61.87	58.88	55.83	61.92	57.55	37.45
Na	0.05	0.89	0.21	1.44	0.49	4.47
Р	2.26	12.52	1.07	7.12	2.02	4.20
S	7.54	0.32	9.88	0.68	1.46	0.44
Ca	10.33	12.39	12.38	7.17	18.55	6.55

 Table S2. Atomic percentages of different elements for the red rectangular region in Fig. 1C

Table S3. Binding energy position of Na 1s, Ca 2p, P 2p, S 2p, O 1s, and C 1s for 5-50%CMC/OPC.

Sets	Na 1s	0	1s	Ca	2p		C 1s		P 2p	S 2p
5%CMC/OPC	1069.65	530.46	528.95	348.82	345.30	287.89	286.14	284.60	131.30	167.31
10%CMC/OPC	1069.35	530.38	528.88	348.73	345.18	287.91	286.10	284.60	131.19	167.13
20%CMC/OPC	1069.37	530.32	529.02	348.92	345.39	288.00	286.03	284.60	131.32	167.31
30%CMC/OPC	1069.38	530.11	528.91	348.90	345.33	288.04	286.05	284.60	131.16	167.21
40%CMC/OPC	1069.45	530.57	529.24	349.05	345.57	287.94	286.08	284.60	131.42	167.51
50%CMC/OPC	1069.36	530.31	528.95	348.86	345.30	287.98	286.14	284.60	131.13	167.15

Sets	Anti-washout (%)			
5%CMC/OPC	0.96 ± 0.42			
10%CMC/OPC	1.07 ± 0.36			
20%CMC/OPC	2.00 ± 0.30			
30%CMC/OPC	2.54 ± 1.06			
40%CMC/OPC	3.14 ± 0.80			
50%CMC/OPC	1.95 ± 0.59			

Table S4. Anti-washout properties of CMC/OPC cement.

 Table S5. Atomic percentages of different elements for the red rectangular region in Fig. 3D.

elements	5%CMC/OPC	10%CMC/OPC	20%CMC/OPC	30%CMC/OPC	40%CMC/OPC	50%CMC/OPC
Р	39.19	42.76	41.15	41.59	40.74	41.35
Ca	60.81	57.24	58.85	58.41	59.26	58.65
Ca/P	1.55	1.34	1.43	1.40	1.45	1.42