3D bioprinting of a gradient stiffness gelatin-alginate hydrogel

with adipose-derived stem cells for full-thickness skin

regeneration

Yuan Ma^{1, #}, Yilin Wang^{2, #}, Danni Chen^{1, #}, Ting Su¹, Qiang Chang^{1, *}, Wenhua Huang^{2, *}, Feng Lu^{1, *}

Supplementary figures:

Figure S1. Representative images of bioprinted microfilaments with different concentration of GAH.

Figure S2. SEM images of 3D-USH and 3D-GSH with cross-sections.

Figure S3. Pore size of 3D-GSH with cross-sections.

Figure S4. Compression modulus of 3D-GSH and 3D-USH.

Figure S5. Biocompatibility of monolayer 3D-GAH with different alginate concentrations.

Figure S6. The stiffness gradient of GSH guided the migration of ADSCs from soft to stiffness regions. (A) Schematic diagram; (B) distribution of ADSCs in USH and GSH after 1 day of culture, the dotted line indicates the start site of ADSCs migration, scale bar = 100 μ m; (C) quantification of the number of migrated cells.