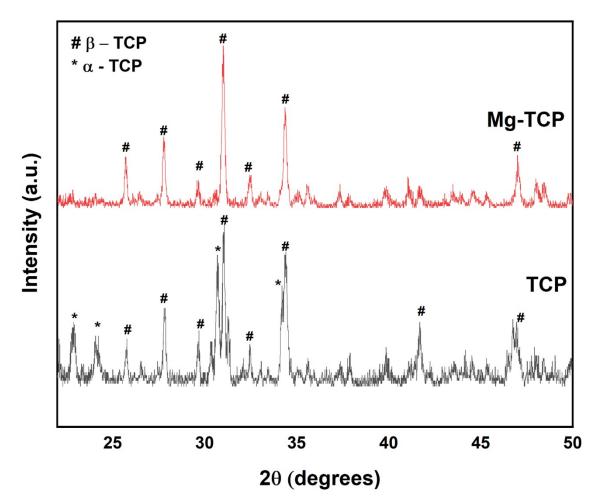
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2023

In vivo and *In vitro* properties evaluation of curcumin loaded MgO doped 3D printed TCP scaffolds

Arjak Bhattacharjee, Yongdeok Jo, and Susmita Bose

W. M. Keck Biomedical Materials Research Laboratory

School of Mechanical and Materials Engineering


Washington State University, Pullman, Washington 99164, USA

*Corresponding author email: <u>sbose@wsu.edu;</u>

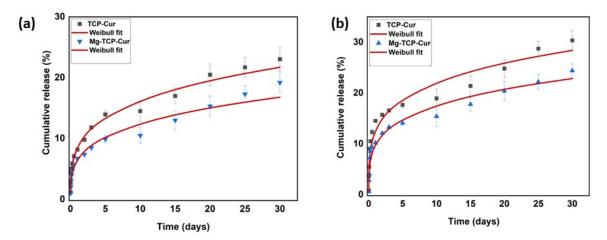
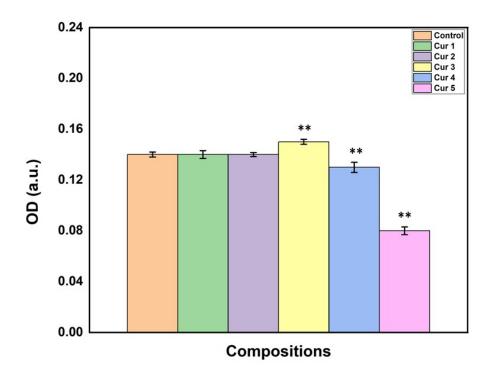

Supplementary information

Table S1: values of parameters obtained from the Weibull model fit of 24 h releasekinetics data (Figs. 1c, e and equation 1)


рН	Sample	a	b
7.4	TCP-Cur	3.5	1.2
7.4	Mg-TCP-Cur	3.4	1.6
5.0	TCP-Cur	6.9	3.8
5.0	Mg-TCP-Cur	6.7	5.0

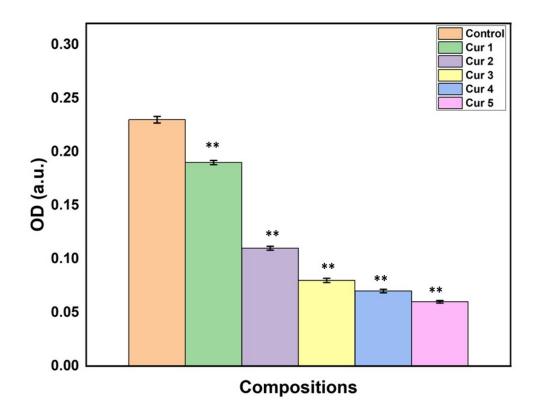

Fig. S1: XRD results of TCP indicate predominantly β - TCP (JCPDS # 09-0169) phases after sintering with some α - TCP (JCPDS # 09-0348) phases. The Mg-TCP sample shows only β - TCP phase.

Fig. S2: Weibull fitting of obtained drug release data after 30 days of release (a) at pH 7.4 (b) at pH 5.0.

Fig. S3: MTT assay results after interaction with different amounts of curcumin-loaded scaffolds and osteoblast on day 5 show that the Cur 3 sample shows a significant increase in cellular viability, which decreases for the compositions Cur 4 and Cur 5.

Fig. S4: MTT assay results after interaction of osteosarcoma with different amounts of curcumin-loaded scaffolds show that the presence of curcumin leads to a significant reduction in osteosarcoma cell viability on day 5.