Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2023

Polymerization-Induced Emission (PIE) of Multifunctional

Polyamides Synthesized by Ugi Polymerization and Targeted

Imaging for Lysosomes

Xue Meng^a, Tingting Hao, Da Zhang^a, Ronghui Zhao^{a,b}, Hongmei Liu^a, Pengfei Zhang^a,

Kuilin Deng^a*

^aCollege of Chemistry and Materials Science, Hebei University, Baoding 071002,

China; ^b Department of Clinical Pharmacy, Affiliated Hospital of Hebei University,

Baoding 071002, China

*Corresponding author: Email: dengkl_hbu@163.com

Chemicals and Reagents:
Instruments and Measurements:
Synthesis of small molecule model compounds (AM)
Table S1. Different structures of synthesized PAMs.
Table S2. Yield, <i>M_n</i> , <i>PDI</i> and quantum yield of PAMs
Fig. S1. ¹ H NMR spectra of PAMs
Fig. S2. FT-IR spectra of PAMs
Fig. S3. GPC curves of PAMs7
Fig. S4. UV and Fluorescence Spectra of PAMs and AM
Fig. S5. M_n change of PAM-TB with polymerization time
Fig. S6. Fluorescence spectra of PAM-TB solution with different concentration9
Fig. S7. Particle size plots of PAM-TB at different concentrations9
Fig. S8. The effect of anions on fluorescence intensity
Fig. S9. Schematic illustration of PAMs reuse10
Fig. S10. Visual test paper for Fe ³⁺ ions11
Fig. S11. Cell imaging experiments of PAM-TB11
Fig. S12. Colocalization Coefficient of PAM-TM and LysoTracker Red in PC-12
cell12

Fig. S13. Colocalization Coefficient of PAM-TM and LysoTracker Red in HeLa	
cell	.12
Fig. S14. Photobleaching resistance map of PAM-TM in cells.	.13
Fig. S15. Effects of PAM-TM on PC-12 cell viability	.13
Fig. S16. Fluorescence intensity of PAM-TM in the presence or absence of interfering ions	14
Table S3. A comparison between PAM-TM probes and the reported Fe^{3+} -	• • •
responsive fluorescent probes	.15

Chemicals and Reagents:

Oxalic acid · succinic acid and adipic acid were purchased from Tianjin Kemiou Chemical Reagent Co., Ltd. Glutaraldehyde, terephthalaldehyde and 2-Morpholinoethyl isocyanide were provided by Aladdin Company (Shanghai, China). Benzaldehyde, propanoic acid, *t*-butylisonitrile and *N*-(2-aminoethyl)-morpholine were purchased from Shanghai McLean Biochemical Co., Ltd. (China). Unless otherwise stated, all chemicals and reagents were obtained from commercial suppliers and used as received without further purification. PC-12 cells were purchased from Procell Biotechnology and thiazole blue tetrazole ammonium bromide (MTT) from Solarbio Life Sciences.

Instruments and Measurements:

In the experiments, we scanned Fourier transform infrared spectra (FT-IR) of PAMs in the wavenumber range of 400-4000 cm⁻¹ using a Bruker Tensor 27 FT-IR spectrometer with a Specac Quest ATR accessory. ¹H NMRs (400 MHz) of PAMs were recorded on a Bruker AVANCE III spectrometer at room temperature with tetramethylsilane (TMS) as an internal standard. The molecular weight (M_n) and polydispersity index (*PDI*) of prepared PAMs were determined using a gel

permeation chromatography (GPC) system (Agilent 1200). *N*, *N*-dimethylformamide (DMF) with 0.1% lithium bromide as the elution solvent and polystyrene as the molecular weight standard. The average size of aggregated particles in solution was measured by dynamic light scattering (DLS) Zetasizer nano-ZSE. MTT analyses were conducted on a microplate reader (TECAN infinite M1000 Pro). Confocal fluorescence images were performed on inverted Zeiss LSM800.

Synthesis of small molecule model compounds (AM)

According to the synthesis steps for PAMs, *N*-(2-Aminoethyl)-morpholine (3 mmol, 0.40 g) and benzaldehyde (3 mmol, 0.32 g) were dissolved in 6 mL DMSO and reacted for 1 h to produce imine intermediates. Then, propionic acid (3 mmol, 0.23 g) and *t*-butylisonitrile (3.5 mmol, 0.30 g) were added to the reaction system, and the reaction was completed over 24 h. The crude product was purified by a column chromatography with an eluent of ethyl acetate and ethanol (10:1, v/v) mixture. The pure small molecule model compound, *N*-(2-tert-butylamino)-2-carbonyl-*1*-phenylethyl)-*N*-(2-morpholine ethyl) propionamide, abbreviated as AM, was obtained as yellow solid with a yield of 88%.

Table S1. Different structures of synthesized PAMs.

Sample	Yield (%)	$M_{ m n}$ ×10 ⁴ g/mol	PDI	Quantum yield (%)
РАМ-ТО	75.36	1.10	1.79	26.8
РАМ-ТВ	78.96	1.60	1.66	23.4
РАМ-ТА	77.68	2.20	1.75	19.6
PAM-GO	68.52	0.71	1.72	12.1
PAM-GB	66.75	0.83	1.84	10.8
PAM-GA	70.25	0.88	1.91	8.60
PAM-TM	62.13	1.40	1.47	14.3

Table S2. Yield, M_n , PDI and quantum yield of PAMs.

8

2

Fig. S1. ¹H NMR spectra of PAMs

Fig. S2. FT-IR spectra of PAMs

Fig. S3. GPC curves of PAMs.

Fig. S4. UV and Fluorescence Spectra of PAMs and AM.

Fig. S5. *M*_n change of PAM-TB with polymerization time.

Fig. S6. Fluorescence spectra of PAM-TB solution with different concentration.

Fig. S7. Particle size plots of PAM-TB at different concentrations.

Fig. S8. The effect of anions on fluorescence intensity.

Fig. S9. Schematic illustration of PAMs reuse.

Preparation of test strips

We tried to test whether PAM-TB probe to Fe^{3+} ions could be applied in the solid state. By first immersing thin layer chromatography (TLC) plates in a PAM-TB solution, the PIE-active PAM-TB was uniformly adsorbed on the plates and displayed bright fluorescence under a portable 365 nm UV lamp, as shown Fig S10a. Then, the trace amounts of Fe^{3+} solution was spotted on the plate using a capillary, and the quenching of the fluorescence after the addition of Fe^{3+} ions was immediately seen under UV light. Actually, this quenching phenomenon can be clearly observed with the naked eye to identify the tested ions.

In addition, the filter paper was soaped in a solution of PAM-TB (5 mg/mL) in CHCl₂ to adsorb PAM-TB. After drying, the different concentrations of Fe³⁺ solutions were added dropwise to the treated filter paper, and we observed the paper surface under 365 nm UV light irradiation, the fluorescence change of the filter paper was clearly visible due to the quenching effect of Fe³⁺. To determine the lowest visible detection concentration of Fe³⁺ ions by the fluorescence sensor, we dropped Fe³⁺ solutions with different concentrations onto the treated test paper. The filter paper was dried and observed fluorescence under UV light, as shown in Fig. S10b. The fluorescence intensity gradually decreased with the increase of Fe³⁺ ion concentration. It can be seen from the figure that when the Fe³⁺ ion concentration is 2 μ M, the quenching effect of its fluorescence is negligible. Therefore, the PAM-TB-based test paper can be used as a portable sensitive fluorescence sensor with a minimum

detection concentration of 2 μ M for Fe³⁺ ions. Moreover, we can restore the fluorescence of the test paper by introducing EDTA into the Fe³⁺ ion quenched test paper, thereby realizing the reuse of the fluorescent test paper, as shown in Fig. S10c.

Figure S10. Visual test paper for Fe³⁺ ions

(a) Comparison of fluorescence photos before and after spotting Fe^{3+} solution on PAM-TB-deposited thin layer chromatography (TLC) plate; (b) Fluorescent test papers exposed to various concentrations of Fe^{3+} ; (c) Photographs of fluorescent test papers for Fe^{3+} detection and twice recycles after recovery by EDTA.

Fig. S11. Cell imaging experiments of PAM-TB

Confocal images of PC-12 cells stained with 1.0 μ M PAM-TB and 50 nM LysoTracker Red: (A) Confocal image of PAM-TB on channel 1 ($\lambda ex = 405$ nm); (B) Confocal image of LysoTracker Red on channel 2 ($\lambda ex = 633$ nm); (C) Overlay of (B) and (D). Colocalization Coefficient of PAM-TM and LysoTracker Red. Scale bar =

Fig. S12. Colocalization Coefficient of PAM-TM and LysoTracker Red in PC-12 cell.

Fig. S13. Colocalization Coefficient of PAM-TM and LysoTracker Red in HeLa cell.

Confocal images of Hela cells stained with 1.0 μ M PAM-TM and 50 nM LysoTracker Red: (A) Confocal image of PAM-TM on channel 1 ($\lambda ex = 488$ nm); (B) Confocal image of LysoTracker Red on channel 2 ($\lambda ex = 633$ nm); (C) Overlay of (B) and (D). Colocalization Coefficient of PAM-TM and LysoTracker Red. Scale bar = 10 μ m

Photobleaching resistance of PAM-TM in cells

(Left) F/F₀ (%) of fluorescent emission of PAM-TM (1.0 μ M) and LysoTracker Red (50 nM) with increasing time. Green channel ($\lambda ex = 488$ nm,); Red channel ($\lambda ex = 633$ nm); (Right) fluorescent images of living PC-12 cells stained with PAM-TM (1.0 μ M) and LysoTracker Red (50 nM) at 0 and 9 min. Scale bar = 10 μ m

Fig. S14. Photobleaching resistance map of PAM-TM in cells.

Cytotoxicity assay

PC-12 cells in 96-well plates were rinsed with PBS and treated with DMEM supplemented with PAM-TM at the desired concentrations for 24 h. After that, the cytotoxicity of PAM-TM was examined by standard MTT assay according to the reported work.

Fig. S15. Effects of PAM-TM on PC-12 cell viability.

Fig. S16. Fluorescence intensity of PAM-TM in the presence or absence of interfering ions.

REF	Targeting	Detection	Toxicity	Application
		Limit (M)		
Zhang et al. (2020) ¹	no targeting studies	2.77×10 ⁻⁶	No toxicity studies	Hela Cell imaging
Huang et al. $(2021)^2$	no targeting studies	1.77×10 ⁻⁶	Low toxicity	Hela Cell/Zebrafish
Ye et al. (2019) ³	Lysosome	6.5×10 ⁻⁷	Low toxicity	C2C12 Cell imaging
Tumay et al. (2021) ⁴	no targeting studies	2.23×10 ⁻⁷	No toxicity studies	Water sample
Yu et al. (2021) ⁵	no targeting studies	1.4×10 ⁻⁸	low toxicity	Zebrafish in vivo imaging
Li et al. (2021) ⁶	no targeting studies	9.83×10 ⁻⁸	No toxicity studies	Hela Cell imaging
Geng et al. (2021) ⁷	no targeting studies	8.2×10 ⁻⁷	low toxicity	Hela Cell imaging
Xie et al. (2021) ⁸	no targeting studies	9.52×10 ⁻⁸	No toxicity studies	Water sample
Luo et al. (2016) ⁹	no targeting studies	1.24×10^{-8}	No toxicity studies	PC-12 Cell imaging
Sing et al. (2019) ¹⁰	no targeting studies	1.32×10 ⁻⁶	No toxicity studies	Water sample
PAM-TM	Lysosome	5.4×10 ⁻⁸	low toxicity	PC-12 Cell imaging

Table S3. A comparison between PAM-TM probes and the reported Fe³⁺-

responsive	fluorescent	probes
------------	-------------	--------

Refferences

1. Zhang, X.; Gou, Z.; Zuo, Y.; Lin, W., A novel polythioether-based rhodamine B fluorescent probe via successive click reaction and its application in iron ion detection and cell imaging. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy* **2020**, *228*, 117679.

2. Huang, J.; Yan, Z.; Qiu, P.; Mo, Y.; Cao, Q.; Li, Q.; Huo, L.; Zhao, L., A New Coumarin-Acridone Compound as a Fluorescence Probe for Fe3+ and Its Application in Living Cells and Zebrafish. *Molecules* **2021**, *26* (8), 2115.

3. Ye, F.; Wu, N.; Li, P.; Liu, Y.-L.; Li, S.-J.; Fu, Y., A lysosome-targetable fluorescent probe for imaging trivalent cations Fe3+, Al3+ and Cr3+ in living cells. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy* **2019**, *222*, 117242.

4. Tümay, S. O.; Irani-Nezhad, M. H.; Khataee, A., Multi-anthracene containing fluorescent probe for spectrofluorimetric iron determination in environmental water samples. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy* **2021**, *248*, 119250.

5. Yu, L.; He, M.; Liu, S.; Dou, X.; Li, L.; Gu, N.; Li, B.; Liu, Z.; Wang, G.; Fan, J., Fluorescent Egg White-Based Carbon Dots as a High-Sensitivity Iron Chelator for the Therapy of Nonalcoholic Fatty Liver Disease by Iron Overload in Zebrafish. *ACS Applied Materials & Interfaces* **2021**, *13* (46), 54677-54689.

6. Li, B.; Gu, X.; Wang, M.; Liu, X.; Xu, K., A novel "off-on-off" fluorescent probe for

sensing of Fe3+ and F- successively in aqueous solution and its application in cells. Dyes and

Pigments 2021, 194, 109637.

7. Geng, Y.; Chen, L.; Wan, Q.; Lian, C.; Han, Y.; Wang, Y.; Zhang, C.; Huang, L.; Zhao, H.; Sun, X.; He, H., A novel [1,2,4]triazolo[1,5-a]pyrimidine derivative as a fluorescence probe for specific detection of Fe3+ ions and application in cell imaging. *Analytica Chimica Acta* **2021**, *1187*, 339168.

8. Xie, B.; Lei, L.; Liu, E.; Bai, G.; Ye, R.; Xu, S., Blue-LED-excited Ce3+-doped alkalineearth sulfide luminescent nanocrystals for selective and sensitive Fe3+ ions sensing. *Journal of Luminescence* **2021**, *230*, 117740.

9. Luo, A.; Wang, H.; Wang, Y.; Huang, Q.; Zhang, Q., A novel colorimetric and turn-on fluorescent chemosensor for iron(III) ion detection and its application to cellular imaging. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy* **2016**, *168*, 37-44.

10. Singh, V. K.; M. Yadav, S.; Mishra, H.; Kumar, R.; Tiwari, R. S.; Pandey, A.; Srivastava, A., WS2 Quantum Dot Graphene Nanocomposite Film for UV Photodetection. *ACS Applied Nano Materials* **2019**, *2* (6), 3934-3942.