Supporting information for

Biodegradable polyurethane incorporating decellularized spinal cord matrix scaffold enhance Schwann cells reprogram to promote peripheral nerve repair

Yanchao Wang¹, Jingjing Lin², Jinlin Chen², Ruichao Liang¹, Qiao Zhang¹, Jiehua Li², Min Shi³, Lei Li⁴, Xueling He^{2,5*}, Ting Lan^{3*}, Xuhui Hui¹ and Hong Tan²

 Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, China.

2. College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, China.

 Department of Pathology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital affiliate to School of Medicine, UESTC, Chengdu, 610000, China.

4. Gastrointestinal Surgery Center, Sichuan Cancer Hospital & Institute, Sichuan
Cancer Center, Cancer Hospital affiliate to School of Medicine, UESTC, Chengdu,
610000, China.

 Editorial Board of Journal of Sichuan University (Medical Sciences), Sichuan University, Chengdu, Sichuan, 610000, China.

*, corresponding authors.

Xueling He: hxlscu@163.com

Ting Lan: tinglanpathology@gmail.com

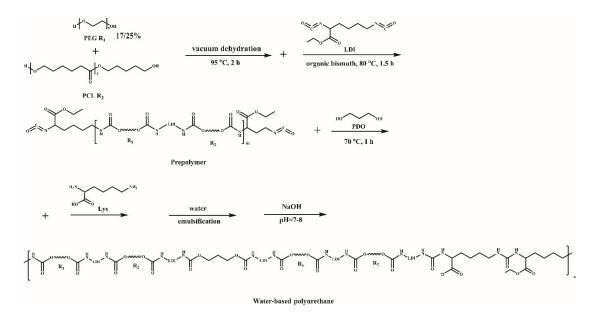


Figure S1. Schematic of the synthesis of BWPU.

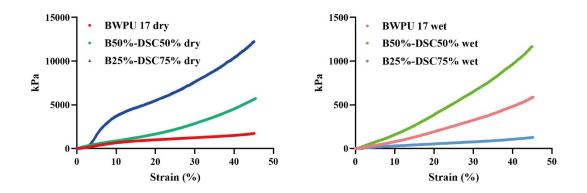


Figure S2. Compressive stress and compressive strain curves of each group.

Figure S3. Functional recovery of the regenerated sciatic nerve at 2- and 6-weeks postoperation. Footprint photographs of rats in corresponding groups.